finetune_classifier_dygraph_distributed.py 6.4 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial

import numpy as np
import logging

import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)


#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay


if __name__ == '__main__':
    parser = propeller.ArgumentParser('classify model with ERNIE')
    parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
    parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
    parser.add_argument('--bsz', type=int, default=32, help='batchsize')
    parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
    parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
    parser.add_argument('--warmup_proportion', type=float, default=0.1)
    parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
    parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
    parser.add_argument('--wd', type=int, default=0.01, help='weight decay, aka L2 regularizer')
M
Meiyim 已提交
56
    parser.add_argument('--init_checkpoint', type=str, default=None, help='checkpoint to warm start from')
M
Meiyim 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    args = parser.parse_args()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
    #tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.TextColumn('seg_b', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.LabelColumn('label', vocab_dict={
            b"0": 0,
            b"1": 1,
            b"2": 2,
        }),
    ])

    def map_fn(seg_a, seg_b, label):
        seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
        sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
        return sentence, segments, label


    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=False, repeat=True, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))
    train_ds = train_ds.shard(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id)
    log.debug('shard %d/%d'%(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id))
    train_ds = train_ds.shuffle(10000)

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))


    shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
    types = ('int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types

    place = F.CUDAPlace(FD.parallel.Env().dev_id)
    with FD.guard(place):
        ctx = FD.parallel.prepare_context()
        model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')
M
Meiyim 已提交
103 104 105 106 107 108

        if args.init_checkpoint is not None:
            log.info('loading checkpoint from %s' % args.init_checkpoint)
            sd, _ = FD.load_dygraph(args.init_checkpoint)
            model.set_dict(sd)

M
Meiyim 已提交
109 110
        model = FD.parallel.DataParallel(model, ctx)

M
Meiyim 已提交
111 112 113 114 115 116 117 118 119
        g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental
        opt = AdamW(learning_rate=LinearDecay(
                    args.lr, 
                    int(args.warmup_proportion * args.max_steps), 
                    args.max_steps), 
                parameter_list=model.parameters(), 
                weight_decay=args.wd, 
                grad_clip=g_clip)

M
Meiyim 已提交
120 121 122 123 124 125
        for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
            ids, sids, label = d
            loss, _ = model(ids, sids, labels=label)
            scaled_loss = model.scale_loss(loss)
            scaled_loss.backward()
            model.apply_collective_grads()
M
Meiyim 已提交
126
            opt.minimize(scaled_loss)
M
Meiyim 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            model.clear_gradients()
            if step % 10 == 0:
                log.debug('train loss %.5f, lr %.e3' % (loss.numpy(), opt.current_step_lr()))
            if step % 100 == 0 and FD.parallel.Env().dev_id == 0:
                acc = []
                with FD.base._switch_tracer_mode_guard_(is_train=False):
                    model.eval()
                    for step, d in enumerate(tqdm(dev_ds.start(place), desc='evaluating')):
                        ids, sids, label = d
                        loss, logits = model(ids, sids, labels=label)
                        #print('\n'.join(map(str, logits.numpy().tolist())))
                        a = L.argmax(logits, -1) == label
                        acc.append(a.numpy())
                    model.train()
                log.debug('acc %.5f' % np.concatenate(acc).mean())
            if step > args.max_steps:
                break

        if args.save_dir is not None:
            F.save_dygraph(model.state_dict(), args.save_dir)