finetune_classifier_dygraph_distributed.py 6.0 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial

import numpy as np
import logging

import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)


#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay


if __name__ == '__main__':
    parser = propeller.ArgumentParser('classify model with ERNIE')
    parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
    parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
    parser.add_argument('--bsz', type=int, default=32, help='batchsize')
    parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
    parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
    parser.add_argument('--warmup_proportion', type=float, default=0.1)
    parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
    parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
    parser.add_argument('--wd', type=int, default=0.01, help='weight decay, aka L2 regularizer')

    args = parser.parse_args()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
    #tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.TextColumn('seg_b', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.LabelColumn('label', vocab_dict={
            b"0": 0,
            b"1": 1,
            b"2": 2,
        }),
    ])

    def map_fn(seg_a, seg_b, label):
        seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
        sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
        return sentence, segments, label


    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=False, repeat=True, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))
    train_ds = train_ds.shard(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id)
    log.debug('shard %d/%d'%(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id))
    train_ds = train_ds.shuffle(10000)

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))


    shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
    types = ('int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types

    place = F.CUDAPlace(FD.parallel.Env().dev_id)
    with FD.guard(place):
        ctx = FD.parallel.prepare_context()
        model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')
        model = FD.parallel.DataParallel(model, ctx)

        opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd)
        g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
        for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
            ids, sids, label = d
            loss, _ = model(ids, sids, labels=label)
            scaled_loss = model.scale_loss(loss)
            scaled_loss.backward()
            model.apply_collective_grads()
            opt.minimize(scaled_loss, grad_clip=g_clip)
            model.clear_gradients()
            if step % 10 == 0:
                log.debug('train loss %.5f, lr %.e3' % (loss.numpy(), opt.current_step_lr()))
            if step % 100 == 0 and FD.parallel.Env().dev_id == 0:
                acc = []
                with FD.base._switch_tracer_mode_guard_(is_train=False):
                    model.eval()
                    for step, d in enumerate(tqdm(dev_ds.start(place), desc='evaluating')):
                        ids, sids, label = d
                        loss, logits = model(ids, sids, labels=label)
                        #print('\n'.join(map(str, logits.numpy().tolist())))
                        a = L.argmax(logits, -1) == label
                        acc.append(a.numpy())
                    model.train()
                log.debug('acc %.5f' % np.concatenate(acc).mean())
            if step > args.max_steps:
                break

        if args.save_dir is not None:
            F.save_dygraph(model.state_dict(), args.save_dir)