fp16.py 9.4 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""fp16 mixed precision training"""

from __future__ import print_function
import paddle
import paddle.fluid as fluid


def append_cast_op(i, o, prog):
    """
    Append a cast op in a given Program to cast input `i` to data type `o.dtype`.
    Args:
        i (Variable): The input Variable.
        o (Variable): The output Variable.
        prog (Program): The Program to append cast op.
    """
    prog.global_block().append_op(
        type="cast",
        inputs={"X": i},
        outputs={"Out": o},
        attrs={"in_dtype": i.dtype,
               "out_dtype": o.dtype})


def copy_to_master_param(p, block):
    """copy to master"""
    v = block.vars.get(p.name, None)
    if v is None:
        raise ValueError("no param name %s found!" % p.name)
    new_p = fluid.framework.Parameter(
        block=block,
        shape=v.shape,
        dtype=fluid.core.VarDesc.VarType.FP32,
        type=v.type,
        lod_level=v.lod_level,
        stop_gradient=p.stop_gradient,
        trainable=p.trainable,
        optimize_attr=p.optimize_attr,
        regularizer=p.regularizer,
        gradient_clip_attr=p.gradient_clip_attr,
        error_clip=p.error_clip,
        name=v.name + ".master")
    return new_p


def apply_dynamic_loss_scaling(loss_scaling, master_params_grads,
                               incr_every_n_steps, decr_every_n_nan_or_inf,
                               incr_ratio, decr_ratio):
    """dynamix loss scaling"""
    _incr_every_n_steps = fluid.layers.fill_constant(
        shape=[1], dtype='int32', value=incr_every_n_steps)
    _decr_every_n_nan_or_inf = fluid.layers.fill_constant(
        shape=[1], dtype='int32', value=decr_every_n_nan_or_inf)

    _num_good_steps = fluid.layers.create_global_var(
        name=fluid.unique_name.generate("num_good_steps"),
        shape=[1],
        value=0,
        dtype='int32',
        persistable=True)
    _num_bad_steps = fluid.layers.create_global_var(
        name=fluid.unique_name.generate("num_bad_steps"),
        shape=[1],
        value=0,
        dtype='int32',
        persistable=True)

    grads = [fluid.layers.reduce_sum(g) for [_, g] in master_params_grads]
    all_grads = fluid.layers.concat(grads)
    all_grads_sum = fluid.layers.reduce_sum(all_grads)
    is_overall_finite = fluid.layers.isfinite(all_grads_sum)

    update_loss_scaling(is_overall_finite, loss_scaling, _num_good_steps,
                        _num_bad_steps, _incr_every_n_steps,
                        _decr_every_n_nan_or_inf, incr_ratio, decr_ratio)

    # apply_gradient append all ops in global block, thus we shouldn't
    # apply gradient in the switch branch.
    with fluid.layers.Switch() as switch:
        with switch.case(is_overall_finite):
            pass
        with switch.default():
            for _, g in master_params_grads:
                fluid.layers.assign(fluid.layers.zeros_like(g), g)


def create_master_params_grads(params_grads, main_prog, startup_prog, loss_scaling):
    """create master params grads"""
    master_params_grads = []
    for p, g in params_grads:
        with main_prog._optimized_guard([p, g]):
            # create master parameters
            # cast fp16->fp32 in main_prog
            master_param = copy_to_master_param(p, main_prog.global_block())
            startup_master_param = startup_prog.global_block()._clone_variable(
                master_param)
            startup_p = startup_prog.global_block().var(p.name)
            # cast fp16->fp32 in startup_prog
            append_cast_op(startup_p, startup_master_param, startup_prog)
            # cast fp16 gradients to fp32 before apply gradients
            if g.name.find("layer_norm") > -1:
                scaled_g = g / loss_scaling
                master_params_grads.append([p, scaled_g])
                continue
            master_grad = fluid.layers.cast(g, "float32")
            master_grad = master_grad / loss_scaling
            master_params_grads.append([master_param, master_grad])

    return master_params_grads


def master_param_to_train_param(master_params_grads, params_grads, main_prog):
    """convert master param to train param"""
    for idx, m_p_g in enumerate(master_params_grads):
        train_p, _ = params_grads[idx]
        # if train_p.name.find("layer_norm") > -1:
        #    continue
        with main_prog._optimized_guard([m_p_g[0], m_p_g[1]]):
            # append_cast_op(m_p_g[0], train_p, main_prog)
            if train_p.name.find("layer_norm") > -1:
                fluid.layers.assign(m_p_g[0], train_p)
            else:
                append_cast_op(m_p_g[0], train_p, main_prog)


def update_loss_scaling(is_overall_finite, prev_loss_scaling, num_good_steps,
                        num_bad_steps, incr_every_n_steps,
                        decr_every_n_nan_or_inf, incr_ratio, decr_ratio):
    """
    Update loss scaling according to overall gradients. If all gradients is 
    finite after incr_every_n_steps, loss scaling will increase by incr_ratio. 
    Otherwisw, loss scaling will decrease by decr_ratio after 
    decr_every_n_nan_or_inf steps and each step some gradients are infinite.
    Args:
        is_overall_finite (Variable): A boolean variable indicates whether 
                                     all gradients are finite.
        prev_loss_scaling (Variable): Previous loss scaling.
        num_good_steps (Variable): A variable accumulates good steps in which 
                                   all gradients are finite.
        num_bad_steps (Variable): A variable accumulates bad steps in which 
                                  some gradients are infinite.
        incr_every_n_steps (Variable): A variable represents increasing loss 
                                       scaling every n consecutive steps with 
                                       finite gradients.
        decr_every_n_nan_or_inf (Variable): A variable represents decreasing 
                                            loss scaling every n accumulated 
                                            steps with nan or inf gradients.
        incr_ratio(float): The multiplier to use when increasing the loss 
                           scaling.
        decr_ratio(float): The less-than-one-multiplier to use when decreasing 
                           loss scaling.
    """
    zero_steps = fluid.layers.fill_constant(shape=[1], dtype='int32', value=0)
    with fluid.layers.Switch() as switch:
        with switch.case(is_overall_finite):
            should_incr_loss_scaling = fluid.layers.less_than(
                incr_every_n_steps, num_good_steps + 1)
            with fluid.layers.Switch() as switch1:
                with switch1.case(should_incr_loss_scaling):
                    new_loss_scaling = prev_loss_scaling * incr_ratio
                    loss_scaling_is_finite = fluid.layers.isfinite(
                        new_loss_scaling)
                    with fluid.layers.Switch() as switch2:
                        with switch2.case(loss_scaling_is_finite):
                            fluid.layers.assign(new_loss_scaling,
                                                prev_loss_scaling)
                        with switch2.default():
                            pass
                    fluid.layers.assign(zero_steps, num_good_steps)
                    fluid.layers.assign(zero_steps, num_bad_steps)

                with switch1.default():
                    fluid.layers.increment(num_good_steps)
                    fluid.layers.assign(zero_steps, num_bad_steps)

        with switch.default():
            should_decr_loss_scaling = fluid.layers.less_than(
                decr_every_n_nan_or_inf, num_bad_steps + 1)
            with fluid.layers.Switch() as switch3:
                with switch3.case(should_decr_loss_scaling):
                    new_loss_scaling = prev_loss_scaling * decr_ratio
                    static_loss_scaling = \
                        fluid.layers.fill_constant(shape=[1],
                                                   dtype='float32',
                                                   value=1.0)
                    less_than_one = fluid.layers.less_than(new_loss_scaling,
                                                           static_loss_scaling)
                    with fluid.layers.Switch() as switch4:
                        with switch4.case(less_than_one):
                            fluid.layers.assign(static_loss_scaling,
                                                prev_loss_scaling)
                        with switch4.default():
                            fluid.layers.assign(new_loss_scaling,
                                                prev_loss_scaling)
                    fluid.layers.assign(zero_steps, num_good_steps)
                    fluid.layers.assign(zero_steps, num_bad_steps)
                with switch3.default():
                    fluid.layers.assign(zero_steps, num_good_steps)
                    fluid.layers.increment(num_bad_steps)