run_img2txt.py 13.9 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on image-to-text generation tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import paddle.fluid as fluid

from reader.img2txt_reader import Img2TxtReader
from model.tokenization import GptBpeTokenizer
from model.unimo_finetune import UNIMOConfig
from utils.optimization import optimization
from utils.init import init_model
from utils.args import print_arguments
from utils.utils import visualdl_log
from finetune.img2txt import Img2Txt
from args.img2txt_args import parser
from functools import partial
from collections import OrderedDict

args = parser.parse_args()


def get_time():
    """get time"""
    res = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
    return res


def evaluate_datasets(pyreader, reader, eval_func, data_generator,
                      do_pred=False, suffix="out"):
    """evaluate"""
    def evaluate_dataset(phase, path):
        """run evaluation"""
        pyreader.set_batch_generator(data_generator(filelist=path, phase=phase))
        eval_func(eval_phase="%s_%s" % (phase, suffix))

    if args.do_val:
        evaluate_dataset("dev", args.valid_filelist)
    if args.do_test:
        evaluate_dataset("test", args.test_filelist)
    if args.do_pred and do_pred:
        evaluate_dataset("pred", args.test_filelist)


def save_checkpoint(program, exe, suffix):
    """save model checkpoint"""
    save_path = os.path.join(args.checkpoints, suffix)
    fluid.io.save_persistables(exe, save_path, program)


def main(args):
    """main func"""
    unimo_config = UNIMOConfig(args.unimo_config_path)
    if args.hidden_dropout_prob >= 0:
        unimo_config["hidden_dropout_prob"] = args.hidden_dropout_prob
    if args.attention_probs_dropout_prob >= 0:
        unimo_config["attention_probs_dropout_prob"] = args.attention_probs_dropout_prob
    unimo_config.print_config()

    if args.pred_batch_size <= 0:
        args.pred_batch_size = args.batch_size

    gpu_id = 0
    gpus = fluid.core.get_cuda_device_count()
    if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None:
        gpu_list = os.getenv("FLAGS_selected_gpus").split(",")
        gpus = len(gpu_list)
        gpu_id = int(gpu_list[0])

    if args.use_cuda:
        place = fluid.CUDAPlace(gpu_id)
        dev_count = gpus
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    """load vocabulary"""
    tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file,
                                encoder_json_file=args.encoder_json_file,
                                vocab_bpe_file=args.vocab_bpe_file,
                                do_lower_case=True)

    reader = Img2TxtReader(tokenizer, args)
    img2txt = Img2Txt(args, unimo_config, tokenizer)

    if not (args.do_train or args.do_val or args.do_test or args.do_pred):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        train_data_generator = reader.data_generator(
            filelist=args.train_filelist,
            batch_size=args.batch_size,
            epoch=args.epoch,
            dev_count=trainers_num,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_filelist)  # 566747
        max_train_steps = args.epoch * num_train_examples // args.batch_size // trainers_num

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id))
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                print("using adv_type is ", args.adv_type)
                if args.adv_type == "freelb_text":
                    train_pyreader, graph_vars = img2txt.create_model_freelb_text()
                elif args.adv_type == "freelb_image":
                    train_pyreader, graph_vars = img2txt.create_model_freelb_image()
                elif args.adv_type == "villa":
                    train_pyreader, graph_vars = img2txt.create_model_villa()
                else:
                    print("Unsupported adv_type, run model without adversial training")
                    train_pyreader, graph_vars = img2txt.create_model()

                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    beta1=args.beta1,
                    beta2=args.beta2,
                    epsilon=args.epsilon)

    if args.do_val or args.do_test or args.do_pred:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, test_graph_vars = img2txt.create_model(decoding=args.do_decode)
        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))
        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        if args.nccl_comm_num > 1:
            config.nccl_comm_num = args.nccl_comm_num
        if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks:
            config.use_hierarchical_allreduce = args.use_hierarchical_allreduce
            config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks

            assert config.hierarchical_allreduce_inter_nranks > 1
            assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0

            config.hierarchical_allreduce_exter_nranks = \
                trainers_num / config.hierarchical_allreduce_inter_nranks

        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)
    init_model(args, exe, train_program if args.do_train else test_prog)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = 4 if args.use_fp16 else 2  # 2 for fp32 4 for fp16
        exec_strategy.num_iteration_per_drop_scope = min(args.num_iteration_per_drop_scope, args.skip_steps)

        build_strategy = fluid.BuildStrategy()
        build_strategy.remove_unnecessary_lock = False

        if args.use_fuse:
            build_strategy.fuse_all_reduce_ops = True

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy,
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)
        train_pyreader.set_batch_generator(train_data_generator)
        train_resource = {"exe": train_exe,
                          "program": train_program,
                          "pyreader": train_pyreader}
        save_model = partial(save_checkpoint, program=train_program, exe=exe)

    test_dev_count = 1
    if args.do_val or args.do_test or args.do_pred:
        test_exe = exe
        if args.use_multi_gpu_test:
            test_dev_count = nccl2_num_trainers
        test_resource = {"exe": test_exe,
                         "program": test_prog,
                         "pyreader": test_pyreader}
        eval_data_generator = partial(reader.data_generator, batch_size=args.pred_batch_size,
                                      epoch=1, dev_count=test_dev_count, shuffle=False, do_decode=args.do_decode,
                                      place=place)
        eval_func = partial(img2txt.evaluate, resource=test_resource, graph_vars=test_graph_vars,
                            dev_count=test_dev_count, output_path=args.checkpoints, gpu_id=nccl2_trainer_id)
        evaluate = partial(evaluate_datasets, pyreader=test_pyreader, reader=reader,
                           eval_func=eval_func, data_generator=eval_data_generator)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        last_epoch = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()

        skip_steps = args.skip_steps
        while True:
            try:
                steps += 1
                if args.save_and_valid_by_epoch:
                    suffix = "epoch_" + str(last_epoch)
                else:
                    suffix = "step_" + str(steps)
                if steps % skip_steps == 0:
                    outputs = img2txt.evaluate(train_resource, "train", graph_vars)
                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size()
                        verbose += "learning rate: %.8f" % (
                            outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_epoch = steps * args.batch_size * trainers_num // num_train_examples
                    current_example = steps * args.batch_size * trainers_num % num_train_examples

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("%s - epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                          "ppl: %f, speed: %f steps/s"
                          % (get_time(), current_epoch, current_example, num_train_examples,
                             steps, outputs["loss"], outputs["ppl"],
                             args.skip_steps / used_time))
                    time_begin = time.time()

                    if args.visualdl_log and nccl2_trainer_id == 0:
                        visuallog_dict = OrderedDict()
                        visuallog_dict["ppl"] = outputs["ppl"]
                        visualdl_log(visuallog_dict, outputs["ppl"], steps, phase='train')
                else:
                    train_exe.run(fetch_list=[])

                if nccl2_trainer_id >= test_dev_count:
                    continue

                do_save = False
                do_eval = False
                if not args.save_and_valid_by_epoch:
                    if steps % args.save_steps == 0 and nccl2_trainer_id == 0:
                        do_save = True
                    if steps % args.validation_steps == 0:
                        do_eval = True
                else:
                    current_epoch = steps * args.batch_size * trainers_num // num_train_examples
                    if current_epoch != last_epoch:
                        if nccl2_trainer_id == 0:
                            do_save = True
                        do_eval = True

                if do_save:
                    save_model(suffix=suffix)
                if do_eval:
                    if args.do_val or args.do_test or args.do_pred:
                        evaluate(suffix=suffix)

                if args.save_and_valid_by_epoch:
                    last_epoch = current_epoch

            except fluid.core.EOFException:
                save_model(suffix=suffix)
                train_pyreader.reset()
                break

    if nccl2_trainer_id >= test_dev_count:
        return

    if args.do_val or args.do_test or args.do_pred:
        suffix = "output"
        if args.do_train:
            if not args.save_and_valid_by_epoch:
                suffix = "step_" + str(steps)
            else:
                suffix = "epoch_" + str(last_epoch)

        evaluate(suffix=suffix, do_pred=True)


if __name__ == '__main__':
    print_arguments(args)
    main(args)