img2txt_reader.py 19.5 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""data reader for image-to-text generation tasks"""

import csv
csv.field_size_limit(1024 * 1024)
import numpy as np
from collections import namedtuple
import base64
import os
import gzip

import paddle.fluid as fluid
from reader.batching import pad_batch_data, pad_feature_data


class Img2TxtReader(object):
    """image-to-text reader"""
    def __init__(self, tokenizer, args):
        self.tokenizer = tokenizer
        self.pad_id = tokenizer.pad_token_id
        self.cls_id = tokenizer.cls_token_id
        self.sep_id = tokenizer.sep_token_id
        self.mask_id = tokenizer.mask_token_id

        self.tgt_type_id = args.tgt_type_id
        self.max_img_len = args.max_img_len  # 37
        self.max_obj_len = args.max_obj_len
        self.image_embedding_size = args.image_embedding_size  # 2048
        self.max_tgt_len = args.max_tgt_len
        self.max_out_len = args.max_out_len
        self.obj_dict = self.load_obj_file(args.object_file)

        # random_seed must be set for data slicing when using multi-gpu
        if args.random_seed:
            np.random.seed(args.random_seed)
        else:
            np.random.seed(0)

        self.trainer_id = 0
        self.trainer_nums = 1
        if os.getenv("PADDLE_TRAINER_ID"):
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        if os.getenv("PADDLE_TRAINERS_NUM"):
            self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM"))

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

        self.features = {}

    def get_progress(self):
        """return current progress of traning data
        """
        return [self.current_epoch, self.current_file_index, self.total_file, self.current_file]

    def get_num_examples(self, filelist):
        """get total number of examples"""
        num_exp = 0
        files = open(filelist).readlines()
        for index, file_ in enumerate(files):
            file_ = file_.strip()
            if file_.endswith('.gz'):
                with gzip.open(file_, "rt") as f:
                    for line in f:
                        if line is None:
                            continue
                        num_exp += 1
            else:
                with open(file_, "r") as f:
                    for line in f:
                        if line is None:
                            continue
                        num_exp += 1
        return num_exp

    def parse_line(self, line):
        """ parse one line to token_ids, sentence_ids, pos_ids, label
        """
        line = line.strip('\r\n').split(";")

        if len(line) == 16:
            (image_id, caption_id, token_ids, sent_ids, pos_ids, seg_labels,
             node_attr_b, node_attr_e, image_h, image_w, number_box, boxes,
             probs, attr_probs, image_embeddings, label) = line

            image_id = image_id[9:]
        else:
            raise ValueError("One sample have %d fields!" % len(line))

        def decode_feature(base64_str, size):
            """decode image feature"""
            fea_base64 = base64.b64decode(base64_str)
            fea_decode = np.frombuffer(fea_base64, dtype=np.float32)
            shape = size, int(fea_decode.shape[0] / size)
            features = np.resize(fea_decode, shape)
            return features

        number_box = int(number_box)
        boxes = decode_feature(boxes, number_box)
        # probs = decode_feature(probs, number_box)
        image_embeddings = decode_feature(image_embeddings, number_box)
        image_embeddings_cls = np.mean(image_embeddings, axis=0, keepdims=True)
        image_embeddings = np.concatenate([image_embeddings_cls, image_embeddings], 0)
        image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
        image_location[:, :4] = boxes
        image_location[:, 4] = (image_location[:, 3] - image_location[:, 1]) * (
                image_location[:, 2] - image_location[:, 0]) / (float(image_w) * float(image_h))
        image_location[:, 0] = image_location[:, 0] / float(image_w)
        image_location[:, 1] = image_location[:, 1] / float(image_h)
        image_location[:, 2] = image_location[:, 2] / float(image_w)
        image_location[:, 3] = image_location[:, 3] / float(image_h)
        g_location = np.array([0, 0, 1, 1, 1])
        image_location = np.concatenate([np.expand_dims(g_location, axis=0), image_location], axis=0)
        image_loc = image_location

        obj_token_ids, obj_sent_ids, obj_pos_ids = self.obj_dict[image_id]
        obj_token_ids = [int(token) for token in obj_token_ids.split(" ")]
        obj_sent_ids = [int(token) for token in obj_sent_ids.split(" ")]
        obj_pos_ids = [int(token) for token in obj_pos_ids.split(" ")]
        assert len(obj_token_ids) == len(obj_sent_ids) == len(obj_pos_ids), \
            "[Must be true]len(obj_token_ids) == len(obj_sent_ids) == len(obj_pos_ids)"

        if len(obj_token_ids) > self.max_obj_len:
            obj_token_ids = obj_token_ids[:self.max_obj_len]
            obj_sent_ids = obj_sent_ids[:self.max_obj_len]
            obj_pos_ids = obj_pos_ids[:self.max_obj_len]

        if image_loc.shape[0] > self.max_img_len:
            image_loc = image_loc[:self.max_img_len]
            image_embeddings = image_embeddings[:self.max_img_len]

        if token_ids != '':
            token_ids = [int(token) for token in token_ids.split(" ")]
            sent_ids = [int(token) for token in sent_ids.split(" ")]
            pos_ids = [int(token) for token in pos_ids.split(" ")]
            seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")]
            assert len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels), \
                "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)"

            if len(token_ids) > self.max_tgt_len:
                token_ids = token_ids[:self.max_tgt_len - 1] + [self.sep_id]
                sent_ids = sent_ids[:self.max_tgt_len]
                pos_ids = pos_ids[:self.max_tgt_len]
                seg_labels = seg_labels[:self.max_tgt_len - 1] + [-1]

            Record = namedtuple(
                'Record',
                ['image_loc', 'image_embeddings', 'number_box', 'image_id',
                 'obj_token_ids', 'obj_sent_ids', 'obj_pos_ids',
                 'token_ids', 'sent_ids', 'pos_ids', 'seg_labels'])

            record = Record(
                image_loc=image_loc,
                image_embeddings=image_embeddings,
                number_box=number_box + 1,
                image_id=int(image_id),
                obj_token_ids=obj_token_ids,
                obj_sent_ids=obj_sent_ids,
                obj_pos_ids=obj_pos_ids,
                token_ids=token_ids,
                sent_ids=sent_ids,
                pos_ids=pos_ids,
                seg_labels=seg_labels)
        else:
            Record = namedtuple(
                'Record',
                ['image_loc', 'image_embeddings', 'number_box', 'image_id',
                 'obj_token_ids', 'obj_sent_ids', 'obj_pos_ids'])

            record = Record(
                image_loc=image_loc,
                image_embeddings=image_embeddings,
                number_box=number_box + 1,
                image_id=int(image_id),
                obj_token_ids=obj_token_ids,
                obj_sent_ids=obj_sent_ids,
                obj_pos_ids=obj_pos_ids)

        return record

    def load_obj_file(self, obj_file):
        """load image objects file"""
        if not obj_file:
            print("obj_file is None")
            return None
        _dict = {}
        for line in open(obj_file):
            line = line.strip('\r\n').split(';')
            assert len(line) == 4, "the object file should only contain 4 fields!!!"
            image_id, obj_token_ids, obj_sent_ids, obj_pos_ids = line
            _dict[image_id] = [obj_token_ids, obj_sent_ids, obj_pos_ids]
        print('obj_dict size is ', len(_dict))
        return _dict

    def read_file(self, file):
        """read file"""
        if file.endswith('.gz'):
            with gzip.open(file, "rt") as f:
                for line in f:
                    parsed_line = self.parse_line(line)
                    if parsed_line is None:
                        continue
                    yield parsed_line
        else:
            with open(file, "r") as f:
                for line in f:
                    parsed_line = self.parse_line(line)
                    if parsed_line is None:
                        continue
                    yield parsed_line

    def shuffle_samples(self, sample_generator, buffer=1000):
        """shuffle samples"""
        samples = []
        try:
            while True:
                while len(samples) < buffer:
                    sample = next(sample_generator)
                    samples.append(sample)
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
                samples = []
        except StopIteration:
            print("stopiteration: reach end of file")
            if len(samples) == 0:
                yield None
            else:
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample

    def _prepare_batch_data(self, before_batch_records, sample_generator, batch_size, phase=None, do_decode=False,
                            place=None):
        """generate batch records"""
        batch, index = before_batch_records[:], 0
        for sample in sample_generator:
            if sample is None:
                continue
            self.current_example = index
            index += 1

            to_append = len(batch) < batch_size
            if to_append:
                batch.append(sample)
            else:
                yield (True, self._pad_batch_records(batch, do_decode, place))
                batch = [sample]

        if batch:
            if len(batch) == batch_size:
                yield (True, self._pad_batch_records(batch, do_decode, place))
            else:
                # not enough length size batch_size
                yield (False, batch)

    def data_generator(self,
                       filelist,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None,
                       do_decode=False,
                       place=None):
        """data generator"""
        files = open(filelist).readlines()
        self.total_file = len(files)

        def wrapper():
            """wrapper"""
            all_dev_batches = []
            trainer_id = self.trainer_id
            before_batch_records = []
            for epoch_index in range(epoch):
                self.current_file_index = 0
                self.current_epoch = epoch_index

                if phase == "train":  # shuffle file list
                    np.random.shuffle(files)

                for index, file_ in enumerate(files):
                    file_ = file_.strip()
                    self.current_file_index = index + 1
                    self.current_file = file_

                    sample_generator = self.read_file(file_)

                    if phase == "train":  # shuffle buffered sample
                        sample_generator = self.shuffle_samples(sample_generator)

                    for enough_batch_flag, batch_data in self._prepare_batch_data(before_batch_records,
                                                                                  sample_generator, batch_size,
                                                                                  phase=phase, do_decode=do_decode,
                                                                                  place=place):
                        if enough_batch_flag:
                            if len(all_dev_batches) < dev_count:
                                all_dev_batches.append(batch_data)
                            if len(all_dev_batches) == dev_count:
                                yield all_dev_batches[trainer_id]
                                all_dev_batches = []
                        else:
                            print("%d lines remains for file %s" % (len(batch_data), file_))
                            before_batch_records = batch_data[:]

            if len(before_batch_records) != 0:
                if phase == 'train':
                    print("remaining %d records not training, bug ignore it", len(before_batch_records))
                else:
                    print("remaining %d records not val/test, yield", len(before_batch_records))
                    last_batch_data = self._pad_batch_records(before_batch_records, do_decode, place)
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(last_batch_data)
                    if len(all_dev_batches) == dev_count:
                        yield all_dev_batches[trainer_id]
                        all_dev_batches = []

            if phase != "train":
                if trainer_id < len(all_dev_batches):
                    yield all_dev_batches[trainer_id]

        return wrapper

    def _to_lodtensor(self, data, place, lod=None):
        data_tensor = fluid.LoDTensor()
        data_tensor.set(data, place)
        if lod is not None:
            data_tensor.set_lod(lod)
        return data_tensor

    def _pad_batch_records(self, batch_records, do_decode, place):
        # visual image part
        batch_image_loc = [record.image_loc for record in batch_records]
        batch_image_embedding = [record.image_embeddings for record in batch_records]
        batch_image_size = [record.number_box for record in batch_records]
        image_embedding, image_mask = pad_feature_data(batch_image_embedding,
                                                       return_mask=True,
                                                       batch_image_size=batch_image_size)
        image_loc = pad_feature_data(batch_image_loc)

        batch_obj_token_ids = [record.obj_token_ids for record in batch_records]
        batch_obj_sent_ids = [record.obj_sent_ids for record in batch_records]
        batch_obj_pos_ids = [record.obj_pos_ids for record in batch_records]

        padded_obj_token_id, obj_token_mask = pad_batch_data(
            batch_obj_token_ids, pretraining_task='nlu', pad_idx=self.pad_id, return_input_mask=True)
        padded_obj_sent_ids = pad_batch_data(
            batch_obj_sent_ids, pretraining_task='nlu', pad_idx=self.pad_id)
        padded_obj_pos_ids = pad_batch_data(
            batch_obj_pos_ids, pretraining_task='nlu', pad_idx=self.pad_id)

        batch_size = len(batch_image_embedding)
        if do_decode:
            batch_image_id = [record.image_id for record in batch_records]
            image_id = np.array(batch_image_id, dtype='int32').reshape((-1, 1))

            tgt_word = np.array([[self.cls_id]] * batch_size,
                                dtype="int64").reshape([-1, 1, 1])
            tgt_pos_id = np.full_like(tgt_word, 2, dtype="int64").reshape(
                [-1, 1, 1])  ####################### pos start from 2
            init_score = np.zeros_like(tgt_word, dtype="float32").reshape([-1, 1])

            lods = [range(tgt_word.shape[0] + 1)] * 2
            init_score = self._to_lodtensor(init_score, place, lods)
            tgt_word = self._to_lodtensor(tgt_word, place, lods)
            tgt_pos_id = self._to_lodtensor(tgt_pos_id, place, lods)
            init_idx = np.array(range(batch_size), dtype="int32")

            # (batch_size, max_img_len+max_obj_len, 1)
            input_mask = np.concatenate((image_mask, obj_token_mask), axis=1)
            # (batch_size, 1, max_img_len+max_obj_len)
            tgt_src_attn_bias = np.transpose(input_mask, (0, 2, 1)).astype("float32")
            # (batch_size, max_img_len, max_img_len)
            input_mask = np.matmul(input_mask, np.transpose(input_mask, (0, 2, 1)))

            return_list = [image_embedding, image_loc, input_mask, image_id,
                           padded_obj_token_id, padded_obj_sent_ids, padded_obj_pos_ids,
                           tgt_word, tgt_pos_id, init_score, init_idx, tgt_src_attn_bias]

        else:
            batch_token_ids = [record.token_ids for record in batch_records]
            batch_sent_ids = [record.sent_ids for record in batch_records]
            batch_position_ids = [record.pos_ids for record in batch_records]

            token_ids = pad_batch_data(batch_token_ids, pad_idx=self.pad_id)
            sent_ids = pad_batch_data(batch_sent_ids, pad_idx=self.pad_id)
            position_ids = pad_batch_data(batch_position_ids, pad_idx=self.pad_id)

            max_len = token_ids.shape[1]
            tgt_label = []
            for i in range(len(batch_token_ids)):
                tgt_idxs = range(1, len(batch_token_ids[i]))
                tgt_label.extend(batch_token_ids[i][idx] for idx in tgt_idxs)
            tgt_label = np.array(tgt_label).astype("int64").reshape([-1, 1])

            tgt_pos = sum(list(map(lambda i: list(range(max_len * i,
                                                        max_len * i + len(batch_token_ids[i]) - 1)),
                                   range(batch_size))), [])
            tgt_pos = np.array(tgt_pos).reshape([-1, 1]).astype('int64')

            # This is used to avoid attention on paddings.
            token_mask_data = np.array([[1] * len(inst) + [0] *
                                        (max_len - len(inst)) for inst in batch_token_ids])
            token_mask = np.expand_dims(token_mask_data, axis=-1).astype("float32")  # [batch_size, max_len ,1]

            # This is used to avoid attention on paddings and subsequent words.
            token_seq_mask_data = np.zeros((batch_size, max_len, max_len))
            for index, mask_data in enumerate(token_seq_mask_data):
                start = 0
                end = len(batch_token_ids[index])
                # Generate the lower triangular matrix using the slice of matrix
                b = np.tril(np.ones([end - start, end - start]), 0)
                mask_data[start:end, start:end] = b
            token_seq_mask = token_seq_mask_data.astype("float32")

            # (batch_size, max_img_len+max_obj_len+max_seq_len, 1)
            input_mask = np.concatenate((image_mask, obj_token_mask, token_mask), axis=1)
            # (batch_size, max_img_len+max_obj_len+max_seq_len, max_img_len+max_obj_len+max_seq_len)
            input_mask = np.matmul(input_mask, np.transpose(input_mask, (0, 2, 1)))

            input_mask[:, len(image_mask[0]) + len(obj_token_mask[0]):, len(image_mask[0]) + len(obj_token_mask[0]):] \
                = token_seq_mask
            input_mask[:, :len(image_mask[0]) + len(obj_token_mask[0]),
            len(image_mask[0]) + len(obj_token_mask[0]):] = 0

            return_list = [image_embedding, image_loc, input_mask, image_mask, token_mask,
                           padded_obj_token_id, padded_obj_sent_ids, padded_obj_pos_ids,
                           token_ids, sent_ids, position_ids, tgt_label, tgt_pos]

        return return_list


if __name__ == '__main__':
    pass