classification_reader.py 8.6 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""data reader for text classification tasks"""

import os
import csv
import numpy as np
import copy
from collections import namedtuple
from model import tokenization
from reader.batching import pad_batch_data


class ClassifyReader(object):
    """ClassifyReader"""
    def __init__(self, tokenizer, args):
        self.tokenizer = tokenizer
        self.pad_id = tokenizer.pad_token_id
        self.cls_id = tokenizer.cls_token_id
        self.sep_id = tokenizer.sep_token_id
        self.mask_id = tokenizer.mask_token_id

        self.max_seq_len = args.max_seq_len
        self.in_tokens = args.in_tokens

        self.random_seed = 0
        self.global_rng = np.random.RandomState(self.random_seed)

        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _read_tsv(self, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            headers = next(reader)
            text_indices = [
                index for index, h in enumerate(headers) if h != "label"
            ]
            Example = namedtuple('Example', headers)

            examples = []
            for line in reader:
                example = Example(*line)
                examples.append(example)
            return examples

    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_labels = [record.label_id for record in batch_records]
        batch_labels = np.array(batch_labels).astype('int64').reshape([-1, 1])

        if batch_records[0].qid:
            batch_qids = [record.qid for record in batch_records]
            batch_qids = np.array(batch_qids).astype('int64').reshape([-1, 1])
        else:
            batch_qids = np.array([]).astype('int64').reshape([-1, 1])

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids, pretraining_task='nlu', pad_idx=self.pad_id, return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids, pretraining_task='nlu', pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids, pretraining_task='nlu', pad_idx=self.pad_id)
        input_mask = np.matmul(input_mask, np.transpose(input_mask, (0, 2, 1)))

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, batch_labels, batch_qids
        ]

        return return_list

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""
        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)
        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(2, len(token_ids) + 2))
        label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'])

        qid = None
        if "qid" in example._fields:
            qid = example.qid

        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_id=label_id,
            qid=qid)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
            yield self._pad_batch_records(batch_records)

    def get_num_examples(self, input_file):
        """get_num_examples"""
        examples = self._read_tsv(input_file)
        return len(examples)

    def data_generator(self,
                       input_file,
                       batch_size,
                       epoch,
                       dev_count=1,
                       shuffle=True,
                       phase=None):
        """data_generator"""
        examples = self._read_tsv(input_file)

        def wrapper():
            """wrapper"""
            all_dev_batches = []
            trainer_id = 0
            for epoch_index in range(epoch):
                if phase == "train":
                    self.current_example = 0
                    self.current_epoch = epoch_index
                    self.random_seed = epoch_index
                    self.global_rng = np.random.RandomState(self.random_seed)
                    trainer_id = self.trainer_id
                else:
                    trainer_id = 0
                    assert dev_count == 1, "only supports 1 GPU while prediction"
                current_examples = copy.deepcopy(examples)
                if shuffle:
                    self.global_rng.shuffle(current_examples)
                for batch_data in self._prepare_batch_data(
                        current_examples, batch_size, phase=phase):
                    if len(all_dev_batches) < dev_count:
                        all_dev_batches.append(batch_data)
                    if len(all_dev_batches) == dev_count:
                        yield all_dev_batches[trainer_id]
                        all_dev_batches = []
                if phase != "train" and self.trainer_id < len(all_dev_batches):
                    yield all_dev_batches[self.trainer_id]
        return wrapper


if __name__ == '__main__':
    pass