trigram_blocking.py 6.7 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""trigram_blocking for sequence generation"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle.fluid as fluid


class TrigramBlocking(object):
    """trigram blocking check data holder
    """

    def __init__(self, init_token, roberta_tokenizer, beam_size, use_fp16=False):
        """use tokenizer to generate the real-tokens from sub-token ids.
        but we can't pass the tokenizer to network, so we need make a trick
        """
        # => [N, T==0, 1]
        self._alive_seq = fluid.layers.fill_constant_batch_size_like(
            input=init_token,
            shape=[-1, 0, 1],
            dtype=init_token.dtype,
            value=0)
        self._cand_seq = fluid.layers.fill_constant_batch_size_like(
            input=init_token,
            shape=[-1, 0, beam_size],
            dtype=init_token.dtype,
            value=0)

        self.beam_size = beam_size

        self._dtype = "float32" if not use_fp16 else "float16"
        _SHAPE_PLACEHOLDER = [10, beam_size]
        self._delta_score_out = fluid.layers.create_parameter(shape=_SHAPE_PLACEHOLDER, dtype=self._dtype,
                                                              name="duplicated_trigram_blocking_delta_score_out")
        self.tokenizer = roberta_tokenizer
        id2is_full_token = self._build_id2is_full_token(self.tokenizer, self._dtype)
        self._id2is_full_token = fluid.layers.create_parameter(
            shape=id2is_full_token.shape,
            dtype=self._dtype,
            name="duplicated_trigram_blocking_id2is_full_token",
            default_initializer=fluid.initializer.NumpyArrayInitializer(id2is_full_token))

    def update_seq(self, new_step_id, gather_idx):
        """update alive sequence. need pre-gather the inner seq then concat the new step id"""
        # new_step_id = fluid.layers.unsqueeze(new_step_id, axes=[1])
        alive_seq = fluid.layers.gather(self._alive_seq, gather_idx)
        # => [N, T==1, 1]
        alive_seq = fluid.layers.concat([alive_seq, new_step_id], axis=1)
        fluid.layers.assign(alive_seq, self._alive_seq)
        return self._alive_seq

    def expand_cand_seq(self, new_topk_indx):
        """expand the alive seq by concatenating the topk candidates"""
        new_topk_indx = fluid.layers.unsqueeze(new_topk_indx, axes=[1])  # (batch_size, 1, beam_size)
        cand_seq = fluid.layers.expand(self._alive_seq, expand_times=[1, 1, self.beam_size])
        # => [N, T+1, beam_size]
        expand_cand_seq = fluid.layers.concat([cand_seq, new_topk_indx], axis=1)
        fluid.layers.assign(expand_cand_seq, self._cand_seq)
        return self._cand_seq

    @property
    def alive_seq(self):
        """alive seq"""
        return self._alive_seq

    @property
    def cand_seq(self):
        """candidate seq"""
        return self._cand_seq

    @property
    def delta_score_out(self):
        """delta score out"""
        return self._delta_score_out

    @property
    def id2is_full_token(self):
        """id->isfulltoken"""
        return self._id2is_full_token

    @staticmethod
    def blocking_forward(cand_seq, id2is_full_token):
        """py_func can't be member function
        run the trigram-blocking logic. return `delta-score` for every sequence.
            for seq which has duplicated trigram, set delta-score = -inf,
            else set delta-score = 0
        in the outer, should do the `seq-score + delta-score` logic

        alive_seq: shape = [N, T, 1]

        Returns
        ---------
        np.array, shape = [N, 1]
        """
        _BLOCKING_DELTA = -65000.0  # -65500.0 is the min value of float16
        _KEEP_DELTA = 0.0
        cand_seq = np.array(cand_seq)  # (batch_size, dec_len, beam_size)
        cand_seq = np.transpose(cand_seq, axes=(0, 2, 1))  # (batch_size, beam_size, dec_len)
        id2is_full_token = np.array(id2is_full_token)

        def _sub_token_id2full_tokens(sub_token_ids):
            full_tokens = []
            for sub_token_id in sub_token_ids:
                is_full_token = bool(id2is_full_token[sub_token_id])

                if is_full_token or not full_tokens:
                    full_tokens.append([sub_token_id])
                else:
                    pre_full_token = full_tokens[-1]
                    pre_full_token.append(sub_token_id)

            full_tokens = ["-".join(map(str, full_token)) for full_token in full_tokens]
            return full_tokens

        _make_trigram_str = lambda trigram_tokens: "_".join(trigram_tokens)
        delta_list = []
        for beam_cand_ids in cand_seq:
            delta_score = []
            for one_seq_ids in beam_cand_ids:
                sub_token_ids = one_seq_ids.reshape(-1)
                tokens = _sub_token_id2full_tokens(sub_token_ids)
                if len(tokens) <= 3:
                    delta_score.append(_KEEP_DELTA)
                    continue
                # don't include the last trigram(checking self)!
                trigrams = [_make_trigram_str(tokens[end - 3: end]) for end in range(3, len(tokens))]
                trigrams_set = set(trigrams)
                last_trigram = _make_trigram_str(tokens[-3:])
                if last_trigram in trigrams_set:
                    # duplicated
                    delta_score.append(_BLOCKING_DELTA)
                else:
                    delta_score.append(_KEEP_DELTA)
            delta_list.append(delta_score)

        return np.array(delta_list, dtype=id2is_full_token.dtype).reshape(cand_seq.shape[0], cand_seq.shape[1])

    @staticmethod
    def blocking_backward(*args):
        """blocking backward"""
        raise ValueError("Impossible call backward.")

    def _build_id2is_full_token(self, tokenizer, dtype):
        vocab_sz = tokenizer.vocab_size()
        is_full_token = [0.0] * vocab_sz
        for token_id in range(vocab_sz):
            token = tokenizer.convert_id_to_token(token_id)
            token_str = tokenizer.gptbpe_tokenizer.decode_token(token)
            if token_str.startswith(' '):
                is_full_token[token_id] = 1.0

        return np.array(is_full_token, dtype=dtype)