retrieval.py 7.8 KB
Newer Older
X
xfcygaocan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model for retrieval."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob
import time
import codecs
import numpy as np

import paddle.fluid as fluid
from eval import img_eval
from collections import OrderedDict
from utils.utils import print_eval_log
from model.unimo_finetune import UNIMOModel


def circle_loss(sp, sn, m, scale):
    """
    sp: score list of positive samples, shape [B * L]
    sn: score list of negative samples, shape [B * K]
    m: relaxation factor in circle loss function
    scale:  scale factor in circle loss function

    return: circle loss value, shape [1]
    """
    op = 1. + m
    on = 0. - m

    delta_p = 1 - m
    delta_n = m

    ap = fluid.layers.relu(op - sp)
    ap.stop_gradient = True
    an = fluid.layers.relu(sn - on)
    an.stop_gradient = True

    logit_p = ap * (sp - delta_p) 
    logit_p = -1. * scale * logit_p
    logit_p = fluid.layers.cast(x=logit_p, dtype=np.float64)
    loss_p = fluid.layers.reduce_sum(fluid.layers.exp(logit_p), dim=1, keep_dim=False)

    logit_n = an * (sn - delta_n)
    logit_n = scale * logit_n
    logit_n = fluid.layers.cast(x=logit_n, dtype=np.float64)
    loss_n = fluid.layers.reduce_sum(fluid.layers.exp(logit_n), dim=1, keep_dim=False)

    circle_loss = fluid.layers.log(1 + loss_n * loss_p)
    circle_loss = fluid.layers.cast(x=circle_loss, dtype=np.float32)
    return fluid.layers.mean(circle_loss)


def create_model(args, phase, config, samples_num):
    """"create_model"""
    input_mask_shape = [-1, args.max_img_len + args.max_seq_len, args.max_img_len + args.max_seq_len]

    src_ids = fluid.layers.data(name='src_ids', shape=[-1, args.max_seq_len, 1], dtype='int64')
    pos_ids = fluid.layers.data(name='pos_ids', shape=[-1, args.max_seq_len, 1], dtype='int64')
    sent_ids = fluid.layers.data(name='sent_ids', shape=[-1, args.max_seq_len, 1], dtype='int64')
    input_mask = fluid.layers.data(name='input_mask', shape=input_mask_shape, dtype='float32')
    image_embedding = fluid.layers.data(
            name='image_embedding', 
            shape=[-1, args.max_img_len, config["image_embedding_size"]], 
            dtype='float32')
    image_loc = fluid.layers.data(name='image_loc', shape=[-1, args.max_img_len, 5], dtype='float32')
    labels = fluid.layers.data(name='labels', shape=[-1, 1], dtype='int64')
    ids = fluid.layers.data(name='ids', shape=[-1, 2], dtype='int64')

    drop_last = True if phase == 'train' else False
    feed_list = [src_ids, pos_ids, sent_ids, input_mask, image_embedding, image_loc, labels, ids]
    pyreader = fluid.io.DataLoader.from_generator(
            feed_list=feed_list, 
            capacity=70, 
            use_double_buffer=True, 
            iterable=False, 
            drop_last=drop_last)

    emb_ids = {"word_embedding": src_ids, "sent_embedding": sent_ids, "pos_embedding": pos_ids}
    image_input = {"image_embedding": image_embedding, "loc_embedding": image_loc}

    model = UNIMOModel(
        emb_ids=emb_ids,
        input_mask=input_mask,
        config=config,
        image_input=image_input,
        weight_sharing=args.weight_sharing
    )
    text, image = model.get_pooled_output()
    score = model.get_match_output(text, image, mode="mul")
    score = fluid.layers.fc(
        input=score,
        size=1,
        act=None,
        param_attr=fluid.ParamAttr(
            name='match_fc.w_0',
            initializer=fluid.initializer.Xavier()),
        bias_attr=fluid.ParamAttr(name='match_fc.b_0',
            initializer=fluid.initializer.UniformInitializer()))

    score = fluid.layers.reshape(score, [-1, samples_num])
    if phase == 'train':
        if args.use_sigmoid:
            score = fluid.layers.sigmoid(score)
        positive_score = score[:, 0]
        image_neg_score = score[:, 1:int((samples_num + 1) / 2)]
        caption_neg_score = score[:, int((samples_num + 1) / 2):]
        acc = fluid.layers.accuracy(score, labels, k=1)

        positive_score = fluid.layers.reshape(x=positive_score, shape=[-1, 1])
        loss_c = circle_loss(positive_score, caption_neg_score, args.margin, args.scale_circle)
        loss_i = circle_loss(positive_score, image_neg_score, args.margin, args.scale_circle)
        total_loss = (loss_c + loss_i) / 2
    else:
        assert samples_num == 1
        total_loss = fluid.layers.cross_entropy(input=score, label=labels)
        total_loss = fluid.layers.mean(x=total_loss)
        acc = fluid.layers.zeros_like(total_loss)
    graph_vars = {"loss": total_loss, "acc": acc, "score": score, "label": labels, "ids": ids}
    return pyreader, graph_vars


def evaluate(args, exe, test_pyreader, graph_vars, eval_phase, dev_count=1, gpu_id=0, data_reader=None):
    """evaluate"""
    test_pyreader.start()
    time_begin = time.time()
    all_mat = None
    fetch_list = [graph_vars["score"].name, graph_vars["ids"].name]
    while True:
        try:
            score, ids = exe.run(fetch_list=fetch_list)
            mat = np.concatenate([score, ids], axis=1)
            if all_mat is None:
                all_mat = mat
            else:
                all_mat = np.concatenate([all_mat, mat], axis=0)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()

    save_file = "%s/%s.trainers_%d.part_%d.npy" % (args.eval_dir, eval_phase, dev_count, gpu_id)
    np.save(save_file, all_mat)
    tmp_file = "%s/%s.trainers_%d.part_%d.finish" % (args.eval_dir, eval_phase, dev_count, gpu_id)
    tmp_writer = codecs.open(tmp_file, "w", 'utf-8')
    tmp_writer.close()

    if gpu_id == 0:
        while True:
            ret = os.popen('find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"' %
                           (args.eval_dir, eval_phase, dev_count)).readlines()
            if len(ret) != dev_count:
                time.sleep(1)
                continue
            else:
                break

        all_mat = None
        save_files = glob.glob("%s/%s.trainers_%d.part_*.npy" % (args.eval_dir, eval_phase, dev_count))
        for cur_save_file in save_files:
            mat = np.load(cur_save_file)
            if all_mat is None:
                all_mat = mat
            else:
                all_mat = np.concatenate([all_mat, mat], axis=0)

        cur_time = str(int(time.time()))
        os.system("mkdir %s/%s" % (args.eval_dir, cur_time))
        os.system("mv %s/%s.trainers_%d.* %s/%s" % (args.eval_dir, eval_phase, dev_count, args.eval_dir, cur_time))

        assert data_reader is not None
        text2img = {text_id: item[-1] for text_id, item in data_reader._caption_ids_dict.items()}
        img2texts = data_reader._image_sent_map

        ret = OrderedDict()
        ret['phase'] = eval_phase
        ret['loss'] = -1
        ret['data_num'] = all_mat.shape[0]
        ret['used_time'] = round(time_end - time_begin, 4)
        metrics = OrderedDict()
        metrics["recall@k"] = img_eval.recall_at_k
        if args.eval_mertrics in metrics:
            ret_metric = metrics[args.eval_mertrics](all_mat, text2img, img2texts)
            ret.update(ret_metric)
            print_eval_log(ret)
        else:
            raise ValueError('unsupported metric {}'.format(args.eval_mertrics))
        return ret
    else:
        return None