README.en.md 12.5 KB
Newer Older
M
Meiyim 已提交
1
English|[简体中文](./README.zh.md)
M
Meiyim 已提交
2

M
Meiyim 已提交
3
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone_en.png)
M
Meiyim 已提交
4 5 6 7 8 9 10


**Remind: This repo has been refactored, for paper re-production or backward compatibility; plase checkout to [repro branch](https://github.com/PaddlePaddle/ERNIE/tree/repro)**

ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.
ERNIE 2.0 builds a strong basic for nearly every NLP tasks: Text Classification, Ranking, NER, machine reading comprehension, text genration and so on.

K
kirayummy 已提交
11 12
[\[more information\]](https://wenxin.baidu.com/)

M
Meiyim 已提交
13 14
# News

N
nbcc 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
- May.20.2020:

    - Try ERNIE in "`dygraph`", with:
    	- Pretrain and finetune ERNIE with [PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8).
    	- Eager execution with `paddle.fluid.dygraph`.
    	- Distributed training.
    	- Easy deployment.
    	- Learn NLP in Aistudio tutorials.
    	- Backward compatibility for old-styled checkpoint
    
    - [`ERNIE-GEN`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen) is **avaliable** now! ([link here](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
    	- the **state-of-the-art** pre-trained model for generation tasks, accepted by `IJCAI-2020`.
        	- A novel **span-by-span generation pre-training task**.
        	- An **infilling generation** echanism and a **noise-aware generation** method.
        	- Implemented by a carefully designed **Multi-Flow Attention** architecture.
Z
zhanghan 已提交
30
    	- You are able to `download` all models including `base/large/large-430G`.
N
nbcc 已提交
31
  
M
Meiyim 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
- Apr.30.2020: Release [ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), a novel Graph Neural Network Model using ERNIE as its aggregator. It is implemented through [PGL](https://github.com/PaddlePaddle/PGL)
- Mar.27.2020: [Champion on 5 SemEval2020 sub tasks](https://www.jiqizhixin.com/articles/2020-03-27-8)
- Dec.26.2019: [1st place on GLUE leaderboard](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- Nov.6.2019: [Introducing ERNIE-tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- Jul.7.2019: [Introducing ERNIE2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- Mar.16.2019: [Introducing ERNIE1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)

	
# Table of contents
* [Tutorials](#tutorials)
* [Setup](#setup)
* [Fine-tuning](#fine-tuning)
* [Pre-training with ERNIE 1.0](#pre-training-with-ernie-10)
* [Online inference](#online-inference)
* [Distillation](#distillation)

# Quick Tour

```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel

D.guard().__enter__() # activate paddle `dygrpah` mode

model = ErnieModel.from_pretrained('ernie-1.0')    # Try to get pretrained model from server, make sure you have network connection
M
Meiyim 已提交
59
model.eval()
M
Meiyim 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')

ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0))  # insert extra `batch` dimension
pooled, encoded = model(ids)                 # eager execution
print(pooled.numpy())                        # convert  results to numpy

```

# Tutorials

Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/index)!
(please choose the latest version and apply for a GPU environment)

C
chenxuyi 已提交
74
1. [ERNIE for beginners](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
M
Meiyim 已提交
75 76 77 78 79
1. [Sementic analysis](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [Cloze test](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [Knowledge distillation](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [Ask ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
5. [Loading old-styled checkpoint](https://aistudio.baidu.com/aistudio/projectdetail/493415)
M
Meiyim 已提交
80 81 82

# Setup

M
Meiyim 已提交
83 84 85 86 87
##### 1. install PaddlePaddle

This repo requires PaddlePaddle 1.7.0+, please see [here](https://www.paddlepaddle.org.cn/install/quick) for installaton instruction.

##### 2. install ernie
M
Meiyim 已提交
88 89

```script
M
Meiyim 已提交
90
pip install paddle-ernie
M
Meiyim 已提交
91 92 93 94 95
```

or 

```shell
M
Meiyim 已提交
96
git clone https://github.com/PaddlePaddle/ERNIE.git --depth 1
M
Meiyim 已提交
97
cd ERNIE
M
Meiyim 已提交
98
pip install -r requirements.txt
M
Meiyim 已提交
99
pip install -e .
M
Meiyim 已提交
100 101 102 103
```

##### 3. download pretrained models (optional)

M
Meiyim 已提交
104 105 106 107 108 109 110 111
| Model                                              | Description                                                  |abbreviation|
| :------------------------------------------------- | :----------------------------------------------------------- |:-----------|
| [ERNIE 1.0 Base for Chinese](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz)           | L12H768A12  |ernie-1.0|
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz)                         | L3H1024A16  |ernie-tiny|
| [ERNIE 2.0 Base for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz)        | L12H768A12  |ernie-2.0-en|
| [ERNIE 2.0 Large for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | L24H1024A16 |ernie-2.0-large-en|
| [ERNIE Gen base for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz)  | L12H768A12  |ernie-gen-base-en|
| [ERNIE Gen Large for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 | ernie-gen-large-en |
Z
zhanghan17 已提交
112
| [ERNIE Gen Large 430G for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-430g-en.1.tar.gz)| Layer:24, Hidden:1024, Heads:16 + 430G pretrain corpus | ernie-gen-large-430g-en |
M
Meiyim 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

##### 4. download datasets
 
**English Datasets**

Download the [GLUE datasets](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) 

the `--data_dir` option in the following section assumes a directory tree like this:

```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
    └── 1
```

see [demo](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz) data for MNLI task.

**Chinese Datasets**

| Datasets|Description|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz)                 |XNLI is a natural language inference dataset in 15 languages. It was jointly built by Facebook and New York University. We use Chinese data of XNLI to evaluate language understanding ability of our model. [url](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp is a sentiment analysis dataset consisting of reviews on online shopping of hotels, notebooks and books.|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz)         |MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text.|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz)       |NLPCC2016-DBQA is a sub-task of NLPCC-ICCPOL 2016 Shared Task which is hosted by NLPCC(Natural Language Processing and Chinese Computing), this task targets on selecting documents from the candidates to answer the questions. [url: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf]|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 is a evaluation of Chinese extractive reading comprehension hosted by Chinese Information Processing Society of China (CIPS-CL). [url](https://github.com/ymcui/cmrc2018)|


# Fine-tuning

- try eager execution with `dygraph model` :

```script
M
Meiyim 已提交
150 151 152
python3 ./ernie_d/demo/finetune_classifier_dygraph.py \
       --from_pretrained ernie-1.0 \
       --data_dir ./data/xnli  
M
Meiyim 已提交
153 154 155 156 157 158
```

- Distributed finetune

`paddle.distributed.launch` is a process manager, we use it to launch python processes on each avalible GPU devices:

M
Meiyim 已提交
159 160 161
When in distributed training, `max_steps` is used as stopping criteria rather than `epoch` to prevent dead block.
You could calculate `max_steps` with `EPOCH * NUM_TRAIN_EXAMPLES / TOTAL_BATCH`.
Also notice than we shard the train data according to device id to prevent over fitting.
M
Meiyim 已提交
162 163

demo: 
M
Meiyim 已提交
164 165 166 167
(make sure you have more than 2 GPUs, 
online model download can not work in `paddle.distributed.launch`, 
you need to run single card finetuning first to get pretrained model, or donwload and extract one manualy from [here](#section-pretrained-models)): 

M
Meiyim 已提交
168 169 170 171 172 173

```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
    --data_dir data/mnli \
    --max_steps 10000 \
M
Meiyim 已提交
174
    --from_pretrained ernie-2.0-en
M
Meiyim 已提交
175 176 177 178 179 180 181 182 183
```


many other demo python scripts:

1. [Sentiment Analysis](./demo/finetune_sentiment_analysis_dygraph.py)
1. [Semantic Similarity](./demo/finetune_classifier_dygraph.py)
1. [Name Entity Recognition(NER)](./demo/finetune_ner_dygraph.py)
1. [Machine Reading Comprehension](./demo/finetune_mrc_dygraph.py)
M
Meiyim 已提交
184
1. [Text generation](./demo/seq2seq/README.md)
M
Meiyim 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249




**recomended hyper parameters:**

|tasks|batch size|learning rate|
|--|--|--|
| CoLA         | 32 / 64 (base)  | 3e-5                     |
| SST-2        | 64 / 256 (base) | 2e-5                     |
| STS-B        | 128             | 5e-5                     |
| QQP          | 256             | 3e-5(base)/5e-5(large)   |
| MNLI         | 256 / 512 (base)| 3e-5                     |
| QNLI         | 256             | 2e-5                     |
| RTE          | 16 / 4 (base)   | 2e-5(base)/3e-5(large)   |
| MRPC         | 16 / 32 (base)  | 3e-5                     |
| WNLI         | 8               | 2e-5                     |
| XNLI         | 512             | 1e-4(base)/4e-5(large)   |
| CMRC2018     | 64              | 3e-5                     |
| DRCD         | 64              | 5e-5(base)/3e-5(large)   |
| MSRA-NER(SIGHAN2006)  | 16     | 5e-5(base)/1e-5(large)   |
| ChnSentiCorp | 24              | 5e-5(base)/1e-5(large)   |
| LCQMC        | 32              | 2e-5(base)/5e-6(large)   |
| NLPCC2016-DBQA| 64             | 2e-5(base)/1e-5(large)   |

# Pretraining with ERNIE 1.0

see [here](./demo/pretrain/README.md)


# Online inference

If `--inference_model_dir` is passed to `finetune_classifier_dygraph.py`, 
a deployable model will be generated at the end of finetuning and your model is ready to serve.

For details about online inferece, see [C++ inference API](./inference/README.md),
or you can start a multi-gpu inference server with a few lines of codes:

```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model  -p 8881
```

and call the server just like calling local function (python3 only):

```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer

client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```

A pre-made `inference model` for ernie-1.0 can be downloaded at [here](https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz). 
It can be used for feature-based finetuning or feature extraction.

# Distillation

Knowledge distillation is good way to compress and accelerate ERNIE. 

For details about distillation, see [here](./distill/README.md)

L
liyukun01 已提交
250
# Citation
M
Meiyim 已提交
251

L
liyukun01 已提交
252 253 254 255 256 257 258 259 260
### ERNIE 1.0
```
@article{sun2019ernie,
  title={Ernie: Enhanced representation through knowledge integration},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
  journal={arXiv preprint arXiv:1904.09223},
  year={2019}
}
```
M
Meiyim 已提交
261

L
liyukun01 已提交
262
### ERNIE 2.0
M
Meiyim 已提交
263
```
L
liyukun01 已提交
264
@article{sun2019ernie20,
M
Meiyim 已提交
265 266
  title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
267 268
  journal={arXiv preprint arXiv:1907.12412},
  year={2019} 
M
Meiyim 已提交
269 270 271
}
```

L
liyukun01 已提交
272
### ERNIE-GEN
M
Meiyim 已提交
273 274

```
L
liyukun01 已提交
275
@article{xiao2020ernie-gen,
M
Meiyim 已提交
276 277
  title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
278 279
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
M
Meiyim 已提交
280 281 282 283 284 285 286 287 288 289 290
}
```

For full reproduction of paper results, please checkout to `repro` branch of this repo.

### Communication

- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 760439550 (ERNIE discussion group).
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.