未验证 提交 d777edc6 编写于 作者: H Hui Zhang 提交者: GitHub

ctc decoding weight 0.5 (#614)

* ctc decoding weight 0.5

* tiny decoding conf

* more label of mergify

* format doc
上级 538bf271
...@@ -39,6 +39,18 @@ pull_request_rules: ...@@ -39,6 +39,18 @@ pull_request_rules:
actions: actions:
label: label:
remove: ["conflicts"] remove: ["conflicts"]
- name: "auto add label=enhancement"
conditions:
- files~=^deepspeech/
actions:
label:
add: ["enhancement"]
- name: "auto add label=Example"
conditions:
- files~=^examples/
actions:
label:
add: ["Example"]
- name: "auto add label=README" - name: "auto add label=README"
conditions: conditions:
- files~=README.md - files~=README.md
......
...@@ -74,13 +74,13 @@ model: ...@@ -74,13 +74,13 @@ model:
training: training:
n_epoch: 300 n_epoch: 240
accum_grad: 2 accum_grad: 2
global_grad_clip: 5.0 global_grad_clip: 5.0
optim: adam optim: adam
optim_conf: optim_conf:
lr: 0.002 lr: 0.002
weight_decay: 1e-06 weight_decay: 1e-6
scheduler: warmuplr # pytorch v1.1.0+ required scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf: scheduler_conf:
warmup_steps: 25000 warmup_steps: 25000
...@@ -99,7 +99,7 @@ decoding: ...@@ -99,7 +99,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -104,7 +104,7 @@ decoding: ...@@ -104,7 +104,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -97,7 +97,7 @@ decoding: ...@@ -97,7 +97,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -8,7 +8,7 @@ data: ...@@ -8,7 +8,7 @@ data:
spm_model_prefix: 'data/bpe_unigram_5000' spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: "" mean_std_filepath: ""
augmentation_config: conf/augmentation.json augmentation_config: conf/augmentation.json
batch_size: 64 batch_size: 16
min_input_len: 0.5 # seconds min_input_len: 0.5 # seconds
max_input_len: 20.0 # seconds max_input_len: 20.0 # seconds
min_output_len: 0.0 # tokens min_output_len: 0.0 # tokens
...@@ -76,7 +76,7 @@ model: ...@@ -76,7 +76,7 @@ model:
training: training:
n_epoch: 120 n_epoch: 120
accum_grad: 2 accum_grad: 8
global_grad_clip: 5.0 global_grad_clip: 5.0
optim: adam optim: adam
optim_conf: optim_conf:
...@@ -100,7 +100,7 @@ decoding: ...@@ -100,7 +100,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -95,7 +95,7 @@ decoding: ...@@ -95,7 +95,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -104,7 +104,7 @@ decoding: ...@@ -104,7 +104,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -97,7 +97,7 @@ decoding: ...@@ -97,7 +97,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -100,7 +100,7 @@ decoding: ...@@ -100,7 +100,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
...@@ -95,7 +95,7 @@ decoding: ...@@ -95,7 +95,7 @@ decoding:
cutoff_prob: 1.0 cutoff_prob: 1.0
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册