未验证 提交 d777edc6 编写于 作者: H Hui Zhang 提交者: GitHub

ctc decoding weight 0.5 (#614)

* ctc decoding weight 0.5

* tiny decoding conf

* more label of mergify

* format doc
上级 538bf271
......@@ -39,6 +39,18 @@ pull_request_rules:
actions:
label:
remove: ["conflicts"]
- name: "auto add label=enhancement"
conditions:
- files~=^deepspeech/
actions:
label:
add: ["enhancement"]
- name: "auto add label=Example"
conditions:
- files~=^examples/
actions:
label:
add: ["Example"]
- name: "auto add label=README"
conditions:
- files~=README.md
......
......@@ -74,13 +74,13 @@ model:
training:
n_epoch: 300
n_epoch: 240
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
weight_decay: 1e-6
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
warmup_steps: 25000
......@@ -99,7 +99,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -104,7 +104,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -97,7 +97,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -8,7 +8,7 @@ data:
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 64
batch_size: 16
min_input_len: 0.5 # seconds
max_input_len: 20.0 # seconds
min_output_len: 0.0 # tokens
......@@ -76,7 +76,7 @@ model:
training:
n_epoch: 120
accum_grad: 2
accum_grad: 8
global_grad_clip: 5.0
optim: adam
optim_conf:
......@@ -100,7 +100,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -95,7 +95,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -104,7 +104,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -97,7 +97,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -100,7 +100,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
......@@ -95,7 +95,7 @@ decoding:
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册