提交 08f3db5b 编写于 作者: Q qingen

[wip][vec] update search result description, test=doc #1543

上级 ad7ddf8a
......@@ -13,7 +13,7 @@ In this demo, you will learn how to build an audio retrieval system to retrieve
![Workflow of an audio searching system](./img/audio_searching.png)
Note:this demo uses the [CN-Celeb](http://openslr.org/82/) dataset of at least 650,000 audio entries and 3000 speakers to build the audio vector library, which is then retrieved using a preset distance calculation. The dataset can also use other, Adjust as needed, e.g. Librispeech, VoxCeleb, UrbanSound, etc
Note:this demo uses the [CN-Celeb](http://openslr.org/82/) dataset of at least 650,000 audio entries and 3000 speakers to build the audio vector library, which is then retrieved using a preset distance calculation. The dataset can also use other, Adjust as needed, e.g. Librispeech, VoxCeleb, UrbanSound, GloVe, MNIST, etc
## Usage
### 1. Prepare MySQL and Milvus services by docker-compose
......@@ -146,14 +146,14 @@ Then to start the system server, and it provides HTTP backend services.
- memory:132G
dataset:
- CN-Celeb, train size 650,000, test size 10,000, dimention 256, distance L2
- CN-Celeb, train size 650,000, test size 10,000, dimention 192, distance L2
recall and elapsed time statistics are shown in the following figure:
![](./img/result.png)
Compared with other algorithms, the retrieval framework based on Milvus ranks in the middle in terms of speed and performance. Under the premise of 90% recall rate, the retrieval time is about 2.9 milliseconds, which can meet most application scenarios
The retrieval framework based on Milvus takes about 2.9 milliseconds to retrieve on the premise of 90% recall rate, and it takes about 500 milliseconds for feature extraction (testing audio takes about 5 seconds), that is, a single audio test takes about 503 milliseconds in total, which can meet most application scenarios
### 5.Pretrained Models
......
......@@ -148,13 +148,13 @@ ffce340b3790 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…"
- 内存:132G
数据集:
- CN-Celeb, 训练集 65万, 测试集 1万,向量维度 256,距离 L2
- CN-Celeb, 训练集 65万, 测试集 1万,向量维度 192,距离计算方式 L2
召回和耗时统计如下图:
![](./img/result.png)
和其他算法比较,基于 milvus 的检索框架在速度与性能排名居中,在召回率 90% 的前提下,检索耗时约 2.9 毫秒,可以满足大多数应用场景
基于 milvus 的检索框架在召回率 90% 的前提下,检索耗时约 2.9 毫秒,加上特征提取(Embedding)耗时约 500毫秒(测试音频时长约 5秒),即单条音频测试总共耗时约 503 毫秒,可以满足大多数应用场景
### 5. 预训练模型
......
demos/audio_searching/img/result.png

140.2 KB | W: | H:

demos/audio_searching/img/result.png

32.9 KB | W: | H:

demos/audio_searching/img/result.png
demos/audio_searching/img/result.png
demos/audio_searching/img/result.png
demos/audio_searching/img/result.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册