collator.py 12.5 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
Haoxin Ma 已提交
14 15 16 17
import io
from collections import namedtuple
from typing import Optional

H
Hui Zhang 已提交
18
import numpy as np
H
Haoxin Ma 已提交
19
from yacs.config import CfgNode
H
Hui Zhang 已提交
20

H
Haoxin Ma 已提交
21 22 23 24
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.speech import SpeechSegment
H
Haoxin Ma 已提交
25 26 27
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.io.utility import pad_sequence
from deepspeech.utils.log import Log
H
fix bug  
Haoxin Ma 已提交
28

29
__all__ = ["SpeechCollator"]
H
Hui Zhang 已提交
30

31
logger = Log(__name__).getlog()
H
Hui Zhang 已提交
32

H
Haoxin Ma 已提交
33 34
# namedtupe need global for pickle.
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
H
Hui Zhang 已提交
35

H
Haoxin Ma 已提交
36

H
Hui Zhang 已提交
37
class SpeechCollator():
H
Haoxin Ma 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        default = CfgNode(
            dict(
                augmentation_config="",
                random_seed=0,
                mean_std_filepath="",
                unit_type="char",
                vocab_filepath="",
                spm_model_prefix="",
                specgram_type='linear',  # 'linear', 'mfcc', 'fbank'
                feat_dim=0,  # 'mfcc', 'fbank'
                delta_delta=False,  # 'mfcc', 'fbank'
                stride_ms=10.0,  # ms
                window_ms=20.0,  # ms
                n_fft=None,  # fft points
                max_freq=None,  # None for samplerate/2
                target_sample_rate=16000,  # target sample rate
                use_dB_normalization=True,
                target_dB=-20,
                dither=1.0,  # feature dither
H
Haoxin Ma 已提交
59
                keep_transcription_text=False))
H
Hui Zhang 已提交
60

H
Haoxin Ma 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    @classmethod
    def from_config(cls, config):
        """Build a SpeechCollator object from a config.

        Args:
            config (yacs.config.CfgNode): configs object.

        Returns:
            SpeechCollator: collator object.
H
Hui Zhang 已提交
74
        """
H
Haoxin Ma 已提交
75 76
        assert 'augmentation_config' in config.collator
        assert 'keep_transcription_text' in config.collator
H
Haoxin Ma 已提交
77 78
        assert 'mean_std_filepath' in config.collator
        assert 'vocab_filepath' in config.collator
H
Haoxin Ma 已提交
79 80 81
        assert 'specgram_type' in config.collator
        assert 'n_fft' in config.collator
        assert config.collator
H
Hui Zhang 已提交
82

H
Haoxin Ma 已提交
83 84
        if isinstance(config.collator.augmentation_config, (str, bytes)):
            if config.collator.augmentation_config:
H
Haoxin Ma 已提交
85
                aug_file = io.open(
H
Haoxin Ma 已提交
86 87 88
                    config.collator.augmentation_config,
                    mode='r',
                    encoding='utf8')
H
Haoxin Ma 已提交
89 90 91
            else:
                aug_file = io.StringIO(initial_value='{}', newline='')
        else:
H
Haoxin Ma 已提交
92
            aug_file = config.collator.augmentation_config
H
Haoxin Ma 已提交
93 94
            assert isinstance(aug_file, io.StringIO)

H
Haoxin Ma 已提交
95
        speech_collator = cls(
H
Haoxin Ma 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            aug_file=aug_file,
            random_seed=0,
            mean_std_filepath=config.collator.mean_std_filepath,
            unit_type=config.collator.unit_type,
            vocab_filepath=config.collator.vocab_filepath,
            spm_model_prefix=config.collator.spm_model_prefix,
            specgram_type=config.collator.specgram_type,
            feat_dim=config.collator.feat_dim,
            delta_delta=config.collator.delta_delta,
            stride_ms=config.collator.stride_ms,
            window_ms=config.collator.window_ms,
            n_fft=config.collator.n_fft,
            max_freq=config.collator.max_freq,
            target_sample_rate=config.collator.target_sample_rate,
            use_dB_normalization=config.collator.use_dB_normalization,
            target_dB=config.collator.target_dB,
            dither=config.collator.dither,
            keep_transcription_text=config.collator.keep_transcription_text)
H
Haoxin Ma 已提交
114 115
        return speech_collator

H
Haoxin Ma 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(
            self,
            aug_file,
            mean_std_filepath,
            vocab_filepath,
            spm_model_prefix,
            random_seed=0,
            unit_type="char",
            specgram_type='linear',  # 'linear', 'mfcc', 'fbank'
            feat_dim=0,  # 'mfcc', 'fbank'
            delta_delta=False,  # 'mfcc', 'fbank'
            stride_ms=10.0,  # ms
            window_ms=20.0,  # ms
            n_fft=None,  # fft points
            max_freq=None,  # None for samplerate/2
            target_sample_rate=16000,  # target sample rate
            use_dB_normalization=True,
            target_dB=-20,
            dither=1.0,
            keep_transcription_text=True):
H
Haoxin Ma 已提交
136
        """SpeechCollator Collator
H
Haoxin Ma 已提交
137

H
Haoxin Ma 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        Args:
            unit_type(str): token unit type, e.g. char, word, spm
            vocab_filepath (str): vocab file path.
            mean_std_filepath (str): mean and std file path, which suffix is *.npy
            spm_model_prefix (str): spm model prefix, need if `unit_type` is spm.
            augmentation_config (str, optional): augmentation json str. Defaults to '{}'.
            stride_ms (float, optional): stride size in ms. Defaults to 10.0.
            window_ms (float, optional): window size in ms. Defaults to 20.0.
            n_fft (int, optional): fft points for rfft. Defaults to None.
            max_freq (int, optional): max cut freq. Defaults to None.
            target_sample_rate (int, optional): target sample rate which used for training. Defaults to 16000.
            specgram_type (str, optional): 'linear', 'mfcc' or 'fbank'. Defaults to 'linear'.
            feat_dim (int, optional): audio feature dim, using by 'mfcc' or 'fbank'. Defaults to None.
            delta_delta (bool, optional): audio feature with delta-delta, using by 'fbank' or 'mfcc'. Defaults to False.
            use_dB_normalization (bool, optional): do dB normalization. Defaults to True.
            target_dB (int, optional): target dB. Defaults to -20.
            random_seed (int, optional): for random generator. Defaults to 0.
            keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
            if ``keep_transcription_text`` is False, text is token ids else is raw string.
H
Hui Zhang 已提交
157 158

        Do augmentations
H
Haoxin Ma 已提交
159 160
        Padding audio features with zeros to make them have the same shape (or
        a user-defined shape) within one batch.
H
Haoxin Ma 已提交
161 162 163
        """
        self._keep_transcription_text = keep_transcription_text

H
fix bug  
Haoxin Ma 已提交
164
        self._local_data = TarLocalData(tar2info={}, tar2object={})
H
Haoxin Ma 已提交
165
        self._augmentation_pipeline = AugmentationPipeline(
H
Haoxin Ma 已提交
166 167
            augmentation_config=aug_file.read(), random_seed=random_seed)

H
Haoxin Ma 已提交
168
        self._normalizer = FeatureNormalizer(
H
Haoxin Ma 已提交
169
            mean_std_filepath) if mean_std_filepath else None
H
Haoxin Ma 已提交
170

H
Haoxin Ma 已提交
171 172
        self._stride_ms = stride_ms
        self._target_sample_rate = target_sample_rate
H
Haoxin Ma 已提交
173 174

        self._speech_featurizer = SpeechFeaturizer(
H
Haoxin Ma 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
            unit_type=unit_type,
            vocab_filepath=vocab_filepath,
            spm_model_prefix=spm_model_prefix,
            specgram_type=specgram_type,
            feat_dim=feat_dim,
            delta_delta=delta_delta,
            stride_ms=stride_ms,
            window_ms=window_ms,
            n_fft=n_fft,
            max_freq=max_freq,
            target_sample_rate=target_sample_rate,
            use_dB_normalization=use_dB_normalization,
            target_dB=target_dB,
            dither=dither)
H
Haoxin Ma 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    def _parse_tar(self, file):
        """Parse a tar file to get a tarfile object
        and a map containing tarinfoes
        """
        result = {}
        f = tarfile.open(file)
        for tarinfo in f.getmembers():
            result[tarinfo.name] = tarinfo
        return f, result

    def _subfile_from_tar(self, file):
        """Get subfile object from tar.

        It will return a subfile object from tar file
        and cached tar file info for next reading request.
        """
        tarpath, filename = file.split(':', 1)[1].split('#', 1)
        if 'tar2info' not in self._local_data.__dict__:
            self._local_data.tar2info = {}
        if 'tar2object' not in self._local_data.__dict__:
            self._local_data.tar2object = {}
        if tarpath not in self._local_data.tar2info:
            object, infoes = self._parse_tar(tarpath)
            self._local_data.tar2info[tarpath] = infoes
            self._local_data.tar2object[tarpath] = object
        return self._local_data.tar2object[tarpath].extractfile(
            self._local_data.tar2info[tarpath][filename])

    def process_utterance(self, audio_file, transcript):
        """Load, augment, featurize and normalize for speech data.

        :param audio_file: Filepath or file object of audio file.
        :type audio_file: str | file
        :param transcript: Transcription text.
        :type transcript: str
        :return: Tuple of audio feature tensor and data of transcription part,
                 where transcription part could be token ids or text.
        :rtype: tuple of (2darray, list)
        """
        if isinstance(audio_file, str) and audio_file.startswith('tar:'):
            speech_segment = SpeechSegment.from_file(
                self._subfile_from_tar(audio_file), transcript)
        else:
            speech_segment = SpeechSegment.from_file(audio_file, transcript)

        # audio augment
        self._augmentation_pipeline.transform_audio(speech_segment)

        specgram, transcript_part = self._speech_featurizer.featurize(
            speech_segment, self._keep_transcription_text)
        if self._normalizer:
            specgram = self._normalizer.apply(specgram)

        # specgram augment
        specgram = self._augmentation_pipeline.transform_feature(specgram)
H
Haoxin Ma 已提交
245
        specgram = specgram.transpose([1, 0])
H
Haoxin Ma 已提交
246 247
        return specgram, transcript_part

H
Hui Zhang 已提交
248
    def __call__(self, batch):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        """batch examples

        Args:
            batch ([List]): batch is (audio, text)
                audio (np.ndarray) shape (D, T)
                text (List[int] or str): shape (U,)

        Returns:
            tuple(audio, text, audio_lens, text_lens): batched data.
                audio : (B, Tmax, D)
                audio_lens: (B)
                text : (B, Umax)
                text_lens: (B)
        """
        audios = []
H
Hui Zhang 已提交
264
        audio_lens = []
265 266
        texts = []
        text_lens = []
H
Haoxin Ma 已提交
267
        utts = []
H
Haoxin Ma 已提交
268
        for utt, audio, text in batch:
H
Haoxin Ma 已提交
269
            audio, text = self.process_utterance(audio, text)
H
Haoxin Ma 已提交
270 271
            #utt
            utts.append(utt)
H
Hui Zhang 已提交
272
            # audio
H
Haoxin Ma 已提交
273
            audios.append(audio)  # [T, D]
H
Hui Zhang 已提交
274
            audio_lens.append(audio.shape[0])
H
Hui Zhang 已提交
275
            # text
276 277 278 279 280 281
            # for training, text is token ids
            # else text is string, convert to unicode ord
            tokens = []
            if self._keep_transcription_text:
                assert isinstance(text, str), (type(text), text)
                tokens = [ord(t) for t in text]
H
Hui Zhang 已提交
282
            else:
283 284 285 286 287
                tokens = text  # token ids
            tokens = tokens if isinstance(tokens, np.ndarray) else np.array(
                tokens, dtype=np.int64)
            texts.append(tokens)
            text_lens.append(tokens.shape[0])
H
Hui Zhang 已提交
288

289 290 291 292 293 294
        padded_audios = pad_sequence(
            audios, padding_value=0.0).astype(np.float32)  #[B, T, D]
        audio_lens = np.array(audio_lens).astype(np.int64)
        padded_texts = pad_sequence(
            texts, padding_value=IGNORE_ID).astype(np.int64)
        text_lens = np.array(text_lens).astype(np.int64)
H
Haoxin Ma 已提交
295
        return utts, padded_audios, audio_lens, padded_texts, text_lens
H
Haoxin Ma 已提交
296

H
Haoxin Ma 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    @property
    def manifest(self):
        return self._manifest

    @property
    def vocab_size(self):
        return self._speech_featurizer.vocab_size

    @property
    def vocab_list(self):
        return self._speech_featurizer.vocab_list

    @property
    def vocab_dict(self):
        return self._speech_featurizer.vocab_dict

H
Haoxin Ma 已提交
313 314
    @property
    def text_feature(self):
H
Haoxin Ma 已提交
315
        return self._speech_featurizer.text_feature
H
Haoxin Ma 已提交
316

H
Haoxin Ma 已提交
317 318 319
    @property
    def feature_size(self):
        return self._speech_featurizer.feature_size
H
Haoxin Ma 已提交
320 321 322

    @property
    def stride_ms(self):
H
Haoxin Ma 已提交
323
        return self._speech_featurizer.stride_ms