提交 279348d7 编写于 作者: H Haoxin Ma

move process utt to collator

上级 8781ab58
......@@ -165,7 +165,7 @@ class DeepSpeech2Trainer(Trainer):
sortagrad=config.data.sortagrad,
shuffle_method=config.data.shuffle_method)
collate_fn = SpeechCollator(keep_transcription_text=False)
collate_fn = SpeechCollator(config, keep_transcription_text=False)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
......
......@@ -16,14 +16,22 @@ import numpy as np
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.io.utility import pad_sequence
from deepspeech.utils.log import Log
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.speech import SpeechSegment
import io
import time
__all__ = ["SpeechCollator"]
logger = Log(__name__).getlog()
# namedtupe need global for pickle.
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
class SpeechCollator():
def __init__(self, keep_transcription_text=True):
def __init__(self, config, keep_transcription_text=True):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
......@@ -32,6 +40,112 @@ class SpeechCollator():
"""
self._keep_transcription_text = keep_transcription_text
if isinstance(config.data.augmentation_config, (str, bytes)):
if config.data.augmentation_config:
aug_file = io.open(
config.data.augmentation_config, mode='r', encoding='utf8')
else:
aug_file = io.StringIO(initial_value='{}', newline='')
else:
aug_file = config.data.augmentation_config
assert isinstance(aug_file, io.StringIO)
self._local_data = TarLocalData(tar2info={}, tar2object={}
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=aug_file.read(),
random_seed=config.data.random_seed)
self._normalizer = FeatureNormalizer(
config.data.mean_std_filepath) if config.data.mean_std_filepath else None
self._stride_ms = config.data.stride_ms
self._target_sample_rate = config.data.target_sample_rate
self._speech_featurizer = SpeechFeaturizer(
unit_type=config.data.unit_type,
vocab_filepath=config.data.vocab_filepath,
spm_model_prefix=config.data.spm_model_prefix,
specgram_type=config.data.specgram_type,
feat_dim=config.data.feat_dim,
delta_delta=config.data.delta_delta,
stride_ms=config.data.stride_ms,
window_ms=config.data.window_ms,
n_fft=config.data.n_fft,
max_freq=config.data.max_freq,
target_sample_rate=config.data.target_sample_rate,
use_dB_normalization=config.data.use_dB_normalization,
target_dB=config.data.target_dB,
dither=config.data.dither)
def _parse_tar(self, file):
"""Parse a tar file to get a tarfile object
and a map containing tarinfoes
"""
result = {}
f = tarfile.open(file)
for tarinfo in f.getmembers():
result[tarinfo.name] = tarinfo
return f, result
def _subfile_from_tar(self, file):
"""Get subfile object from tar.
It will return a subfile object from tar file
and cached tar file info for next reading request.
"""
tarpath, filename = file.split(':', 1)[1].split('#', 1)
if 'tar2info' not in self._local_data.__dict__:
self._local_data.tar2info = {}
if 'tar2object' not in self._local_data.__dict__:
self._local_data.tar2object = {}
if tarpath not in self._local_data.tar2info:
object, infoes = self._parse_tar(tarpath)
self._local_data.tar2info[tarpath] = infoes
self._local_data.tar2object[tarpath] = object
return self._local_data.tar2object[tarpath].extractfile(
self._local_data.tar2info[tarpath][filename])
def process_utterance(self, audio_file, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param transcript: Transcription text.
:type transcript: str
:return: Tuple of audio feature tensor and data of transcription part,
where transcription part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
start_time = time.time()
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), transcript)
else:
speech_segment = SpeechSegment.from_file(audio_file, transcript)
load_wav_time = time.time() - start_time
#logger.debug(f"load wav time: {load_wav_time}")
# audio augment
start_time = time.time()
self._augmentation_pipeline.transform_audio(speech_segment)
audio_aug_time = time.time() - start_time
#logger.debug(f"audio augmentation time: {audio_aug_time}")
start_time = time.time()
specgram, transcript_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
if self._normalizer:
specgram = self._normalizer.apply(specgram)
feature_time = time.time() - start_time
#logger.debug(f"audio & test feature time: {feature_time}")
# specgram augment
start_time = time.time()
specgram = self._augmentation_pipeline.transform_feature(specgram)
feature_aug_time = time.time() - start_time
#logger.debug(f"audio feature augmentation time: {feature_aug_time}")
return specgram, transcript_part
def __call__(self, batch):
"""batch examples
......@@ -53,6 +167,7 @@ class SpeechCollator():
text_lens = []
utts = []
for utt, audio, text in batch:
audio, text = self.process_utterance(audio, text)
#utt
utts.append(utt)
# audio
......
......@@ -34,9 +34,6 @@ __all__ = [
logger = Log(__name__).getlog()
# namedtupe need global for pickle.
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
class ManifestDataset(Dataset):
@classmethod
......@@ -192,10 +189,6 @@ class ManifestDataset(Dataset):
self._stride_ms = stride_ms
self._target_sample_rate = target_sample_rate
self._normalizer = FeatureNormalizer(
mean_std_filepath) if mean_std_filepath else None
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
unit_type=unit_type,
vocab_filepath=vocab_filepath,
......@@ -214,8 +207,6 @@ class ManifestDataset(Dataset):
self._rng = np.random.RandomState(random_seed)
self._keep_transcription_text = keep_transcription_text
# for caching tar files info
self._local_data = TarLocalData(tar2info={}, tar2object={})
# read manifest
self._manifest = read_manifest(
......@@ -256,74 +247,7 @@ class ManifestDataset(Dataset):
def stride_ms(self):
return self._speech_featurizer.stride_ms
def _parse_tar(self, file):
"""Parse a tar file to get a tarfile object
and a map containing tarinfoes
"""
result = {}
f = tarfile.open(file)
for tarinfo in f.getmembers():
result[tarinfo.name] = tarinfo
return f, result
def _subfile_from_tar(self, file):
"""Get subfile object from tar.
It will return a subfile object from tar file
and cached tar file info for next reading request.
"""
tarpath, filename = file.split(':', 1)[1].split('#', 1)
if 'tar2info' not in self._local_data.__dict__:
self._local_data.tar2info = {}
if 'tar2object' not in self._local_data.__dict__:
self._local_data.tar2object = {}
if tarpath not in self._local_data.tar2info:
object, infoes = self._parse_tar(tarpath)
self._local_data.tar2info[tarpath] = infoes
self._local_data.tar2object[tarpath] = object
return self._local_data.tar2object[tarpath].extractfile(
self._local_data.tar2info[tarpath][filename])
def process_utterance(self, utt, audio_file, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param transcript: Transcription text.
:type transcript: str
:return: Tuple of audio feature tensor and data of transcription part,
where transcription part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
start_time = time.time()
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), transcript)
else:
speech_segment = SpeechSegment.from_file(audio_file, transcript)
load_wav_time = time.time() - start_time
#logger.debug(f"load wav time: {load_wav_time}")
# audio augment
start_time = time.time()
self._augmentation_pipeline.transform_audio(speech_segment)
audio_aug_time = time.time() - start_time
#logger.debug(f"audio augmentation time: {audio_aug_time}")
start_time = time.time()
specgram, transcript_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
if self._normalizer:
specgram = self._normalizer.apply(specgram)
feature_time = time.time() - start_time
#logger.debug(f"audio & test feature time: {feature_time}")
# specgram augment
start_time = time.time()
specgram = self._augmentation_pipeline.transform_feature(specgram)
feature_aug_time = time.time() - start_time
#logger.debug(f"audio feature augmentation time: {feature_aug_time}")
return utt, specgram, transcript_part
def _instance_reader_creator(self, manifest):
"""
......@@ -336,8 +260,6 @@ class ManifestDataset(Dataset):
def reader():
for instance in manifest:
# inst = self.process_utterance(instance["feat"],
# instance["text"])
inst = self.process_utterance(instance["utt"], instance["feat"],
instance["text"])
yield inst
......@@ -349,6 +271,4 @@ class ManifestDataset(Dataset):
def __getitem__(self, idx):
instance = self._manifest[idx]
return self.process_utterance(instance["utt"], instance["feat"],
instance["text"])
# return self.process_utterance(instance["feat"], instance["text"])
return(instance["utt"], instance["feat"], instance["text"])
......@@ -6,7 +6,7 @@ data:
mean_std_filepath: data/mean_std.json
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
batch_size: 4
batch_size: 2
min_input_len: 0.0
max_input_len: 27.0
min_output_len: 0.0
......@@ -37,7 +37,7 @@ model:
share_rnn_weights: True
training:
n_epoch: 20
n_epoch: 10
lr: 1e-5
lr_decay: 1.0
weight_decay: 1e-06
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册