wavernn.py 20.6 KB
Newer Older
小湉湉's avatar
小湉湉 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import time
from typing import List

import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F

小湉湉's avatar
小湉湉 已提交
23
from paddlespeech.t2s.audio.codec import decode_mu_law
小湉湉's avatar
小湉湉 已提交
24 25 26 27 28 29 30
from paddlespeech.t2s.modules.losses import sample_from_discretized_mix_logistic
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.upsample import Stretch2D


class ResBlock(nn.Layer):
    def __init__(self, dims):
小湉湉's avatar
小湉湉 已提交
31
        super().__init__()
小湉湉's avatar
小湉湉 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        self.conv1 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
        self.conv2 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
        self.batch_norm1 = nn.BatchNorm1D(dims)
        self.batch_norm2 = nn.BatchNorm1D(dims)

    def forward(self, x):
        '''
        conv -> bn -> relu -> conv -> bn + residual connection
        '''
        residual = x
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        return x + residual


class MelResNet(nn.Layer):
    def __init__(self,
                 res_blocks: int=10,
                 compute_dims: int=128,
                 res_out_dims: int=128,
                 aux_channels: int=80,
                 aux_context_window: int=0):
        super().__init__()
        k_size = aux_context_window * 2 + 1
        # pay attention here, the dim reduces aux_context_window * 2
        self.conv_in = nn.Conv1D(
            aux_channels, compute_dims, kernel_size=k_size, bias_attr=False)
        self.batch_norm = nn.BatchNorm1D(compute_dims)
        self.layers = nn.LayerList()
        for _ in range(res_blocks):
            self.layers.append(ResBlock(compute_dims))
        self.conv_out = nn.Conv1D(compute_dims, res_out_dims, kernel_size=1)

    def forward(self, x):
        '''
        Parameters
        ----------
        x : Tensor
            Input tensor (B, in_dims, T).
        Returns
        ----------
        Tensor
            Output tensor (B, res_out_dims, T).
        '''
79

小湉湉's avatar
小湉湉 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        x = self.conv_in(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        for f in self.layers:
            x = f(x)
        x = self.conv_out(x)
        return x


class UpsampleNetwork(nn.Layer):
    def __init__(self,
                 aux_channels: int=80,
                 upsample_scales: List[int]=[4, 5, 3, 5],
                 compute_dims: int=128,
                 res_blocks: int=10,
                 res_out_dims: int=128,
                 aux_context_window: int=2):
        super().__init__()
        # total_scale is the total Up sampling multiple
        total_scale = np.prod(upsample_scales)
        # TODO pad*total_scale is numpy.int64
        self.indent = int(aux_context_window * total_scale)
        self.resnet = MelResNet(
            res_blocks=res_blocks,
            aux_channels=aux_channels,
            compute_dims=compute_dims,
            res_out_dims=res_out_dims,
            aux_context_window=aux_context_window)
        self.resnet_stretch = Stretch2D(total_scale, 1)
        self.up_layers = nn.LayerList()
        for scale in upsample_scales:
            k_size = (1, scale * 2 + 1)
            padding = (0, scale)
            stretch = Stretch2D(scale, 1)

            conv = nn.Conv2D(
                1, 1, kernel_size=k_size, padding=padding, bias_attr=False)
            weight_ = paddle.full_like(conv.weight, 1. / k_size[1])
            conv.weight.set_value(weight_)
            self.up_layers.append(stretch)
            self.up_layers.append(conv)

    def forward(self, m):
        '''
        Parameters
        ----------
        c : Tensor
            Input tensor (B, C_aux, T).
        Returns
        ----------
        Tensor
            Output tensor (B, (T - 2 * pad) *  prob(upsample_scales), C_aux).
        Tensor
            Output tensor (B, (T - 2 * pad) *  prob(upsample_scales), res_out_dims).
        '''
        # aux: [B, C_aux, T] 
        # -> [B, res_out_dims, T - 2 * aux_context_window]
        # -> [B, 1, res_out_dims, T - 2 * aux_context_window]
        aux = self.resnet(m).unsqueeze(1)
        # aux: [B, 1, res_out_dims, T - 2 * aux_context_window]
        # -> [B, 1, res_out_dims, (T - 2 * pad) *  prob(upsample_scales)]
        aux = self.resnet_stretch(aux)
        # aux: [B, 1, res_out_dims, T * prob(upsample_scales)] 
        # -> [B, res_out_dims, T * prob(upsample_scales)]
        aux = aux.squeeze(1)
        # m: [B, C_aux, T] -> [B, 1, C_aux, T]
        m = m.unsqueeze(1)
        for f in self.up_layers:
            m = f(m)
        # m: [B, 1, C_aux, T*prob(upsample_scales)]
        # -> [B, C_aux, T * prob(upsample_scales)]
        # -> [B, C_aux, (T - 2 * pad) * prob(upsample_scales)]
        m = m.squeeze(1)[:, :, self.indent:-self.indent]
        # m: [B, (T - 2 * pad) * prob(upsample_scales), C_aux]
        # aux: [B, (T - 2 * pad) * prob(upsample_scales), res_out_dims]
        return m.transpose([0, 2, 1]), aux.transpose([0, 2, 1])


class WaveRNN(nn.Layer):
    def __init__(
            self,
            rnn_dims: int=512,
            fc_dims: int=512,
            bits: int=9,
            aux_context_window: int=2,
            upsample_scales: List[int]=[4, 5, 3, 5],
            aux_channels: int=80,
            compute_dims: int=128,
            res_out_dims: int=128,
            res_blocks: int=10,
            hop_length: int=300,
            sample_rate: int=24000,
            mode='RAW',
            init_type: str="xavier_uniform", ):
        '''
        Parameters
        ----------
        rnn_dims : int, optional
            Hidden dims of RNN Layers.
        fc_dims : int, optional
             Dims of FC Layers.
        bits : int, optional
            bit depth of signal.
        aux_context_window : int, optional
            The context window size of the first convolution applied to the 
            auxiliary input, by default 2
        upsample_scales : List[int], optional
            Upsample scales of the upsample network.
        aux_channels : int, optional
            Auxiliary channel of the residual blocks.
        compute_dims : int, optional
            Dims of Conv1D in MelResNet.
        res_out_dims : int, optional
            Dims of output in MelResNet.
        res_blocks : int, optional
            Number of residual blocks.
        mode : str, optional
            Output mode of the WaveRNN vocoder. `MOL` for Mixture of Logistic Distribution,
            and `RAW` for quantized bits as the model's output.
        init_type : str
            How to initialize parameters.
        '''
        super().__init__()
        self.mode = mode
        self.aux_context_window = aux_context_window
        if self.mode == 'RAW':
            self.n_classes = 2**bits
        elif self.mode == 'MOL':
小湉湉's avatar
小湉湉 已提交
208
            self.n_classes = 10 * 3
小湉湉's avatar
小湉湉 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        else:
            RuntimeError('Unknown model mode value - ', self.mode)

        # List of rnns to call 'flatten_parameters()' on
        self._to_flatten = []

        self.rnn_dims = rnn_dims
        self.aux_dims = res_out_dims // 4
        self.hop_length = hop_length
        self.sample_rate = sample_rate

        # initialize parameters
        initialize(self, init_type)

        self.upsample = UpsampleNetwork(
            aux_channels=aux_channels,
            upsample_scales=upsample_scales,
            compute_dims=compute_dims,
            res_blocks=res_blocks,
            res_out_dims=res_out_dims,
            aux_context_window=aux_context_window)
        self.I = nn.Linear(aux_channels + self.aux_dims + 1, rnn_dims)

        self.rnn1 = nn.GRU(rnn_dims, rnn_dims)
        self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims)
234

小湉湉's avatar
小湉湉 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        self._to_flatten += [self.rnn1, self.rnn2]

        self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
        self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
        self.fc3 = nn.Linear(fc_dims, self.n_classes)

        # Avoid fragmentation of RNN parameters and associated warning
        self._flatten_parameters()

        nn.initializer.set_global_initializer(None)

    def forward(self, x, c):
        '''
        Parameters
        ----------
        x : Tensor
            wav sequence, [B, T]
        c : Tensor
            mel spectrogram [B, C_aux, T']
        
        T = (T' - 2 * aux_context_window ) * hop_length
        Returns
        ----------
        Tensor
            [B, T, n_classes]
        '''
        # Although we `_flatten_parameters()` on init, when using DataParallel
        # the model gets replicated, making it no longer guaranteed that the
        # weights are contiguous in GPU memory. Hence, we must call it again
        self._flatten_parameters()

        bsize = paddle.shape(x)[0]
        h1 = paddle.zeros([1, bsize, self.rnn_dims])
        h2 = paddle.zeros([1, bsize, self.rnn_dims])
        # c: [B, T, C_aux]
        # aux: [B, T, res_out_dims]
        c, aux = self.upsample(c)

        aux_idx = [self.aux_dims * i for i in range(5)]
        a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
        a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
        a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
        a4 = aux[:, :, aux_idx[3]:aux_idx[4]]

        x = paddle.concat([x.unsqueeze(-1), c, a1], axis=2)
        x = self.I(x)
        res = x
        x, _ = self.rnn1(x, h1)

        x = x + res
        res = x
        x = paddle.concat([x, a2], axis=2)
        x, _ = self.rnn2(x, h2)

        x = x + res
        x = paddle.concat([x, a3], axis=2)
        x = F.relu(self.fc1(x))

        x = paddle.concat([x, a4], axis=2)
        x = F.relu(self.fc2(x))

        return self.fc3(x)

    @paddle.no_grad()
    def generate(self,
                 c,
                 batched: bool=True,
                 target: int=12000,
                 overlap: int=600,
                 mu_law: bool=True,
                 gen_display: bool=False):
        """
        Parameters
        ----------
        c : Tensor
            input mels, (T', C_aux)
        batched : bool
            generate in batch or not
        target : int
            target number of samples to be generated in each batch entry
        overlap : int
            number of samples for crossfading between batches
        mu_law : bool
            use mu law or not
        Returns
        ----------
        wav sequence
            Output (T' * prod(upsample_scales), out_channels, C_out).
        """

        self.eval()

        mu_law = mu_law if self.mode == 'RAW' else False

        output = []
        start = time.time()
331

小湉湉's avatar
小湉湉 已提交
332 333 334
        # pseudo batch
        # (T, C_aux) -> (1, C_aux, T)
        c = paddle.transpose(c, [1, 0]).unsqueeze(0)
335
        T = paddle.shape(c)[-1]
小湉湉's avatar
小湉湉 已提交
336
        wave_len = T * self.hop_length
小湉湉's avatar
小湉湉 已提交
337 338 339 340
        # TODO remove two transpose op by modifying function pad_tensor
        c = self.pad_tensor(
            c.transpose([0, 2, 1]), pad=self.aux_context_window,
            side='both').transpose([0, 2, 1])
341

小湉湉's avatar
小湉湉 已提交
342 343 344 345 346 347 348
        c, aux = self.upsample(c)

        if batched:
            # (num_folds, target + 2 * overlap, features)
            c = self.fold_with_overlap(c, target, overlap)
            aux = self.fold_with_overlap(aux, target, overlap)

349 350 351 352 353 354 355
        # for dygraph to static graph, if use seq_len of `b_size, seq_len, _ = paddle.shape(c)` in for
        # will not get TensorArray
        # see https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/case_analysis_cn.html#list-lodtensorarray
        # b_size, seq_len, _ = paddle.shape(c)
        b_size = paddle.shape(c)[0]
        seq_len = paddle.shape(c)[1]

小湉湉's avatar
小湉湉 已提交
356 357 358 359 360 361 362 363 364
        h1 = paddle.zeros([b_size, self.rnn_dims])
        h2 = paddle.zeros([b_size, self.rnn_dims])
        x = paddle.zeros([b_size, 1])

        d = self.aux_dims
        aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]

        for i in range(seq_len):
            m_t = c[:, i, :]
365 366 367 368 369 370
            # for dygraph to static graph
            # a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
            a1_t = aux_split[0][:, i, :]
            a2_t = aux_split[1][:, i, :]
            a3_t = aux_split[2][:, i, :]
            a4_t = aux_split[3][:, i, :]
小湉湉's avatar
小湉湉 已提交
371 372
            x = paddle.concat([x, m_t, a1_t], axis=1)
            x = self.I(x)
373 374
            # use GRUCell here
            h1, _ = self.rnn1[0].cell(x, h1)
小湉湉's avatar
小湉湉 已提交
375 376
            x = x + h1
            inp = paddle.concat([x, a2_t], axis=1)
377 378
            # use GRUCell here
            h2, _ = self.rnn2[0].cell(inp, h2)
小湉湉's avatar
小湉湉 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

            x = x + h2
            x = paddle.concat([x, a3_t], axis=1)
            x = F.relu(self.fc1(x))

            x = paddle.concat([x, a4_t], axis=1)
            x = F.relu(self.fc2(x))

            logits = self.fc3(x)

            if self.mode == 'MOL':
                sample = sample_from_discretized_mix_logistic(
                    logits.unsqueeze(0).transpose([0, 2, 1]))
                output.append(sample.reshape([-1]))
                x = sample.transpose([1, 0, 2])

            elif self.mode == 'RAW':
                posterior = F.softmax(logits, axis=1)
                distrib = paddle.distribution.Categorical(posterior)
                # corresponding operate [np.floor((fx + 1) / 2 * mu + 0.5)] in enocde_mu_law
小湉湉's avatar
小湉湉 已提交
399 400
                # distrib.sample([1])[0].cast('float32'): [0, 2**bits-1]
                # sample: [-1, 1]
小湉湉's avatar
小湉湉 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                sample = 2 * distrib.sample([1])[0].cast('float32') / (
                    self.n_classes - 1.) - 1.
                output.append(sample)
                x = sample.unsqueeze(-1)
            else:
                raise RuntimeError('Unknown model mode value - ', self.mode)

            if gen_display:
                if i % 1000 == 0:
                    self.gen_display(i, int(seq_len), int(b_size), start)

        output = paddle.stack(output).transpose([1, 0])

        if mu_law:
            output = decode_mu_law(output, self.n_classes, False)

        if batched:
            output = self.xfade_and_unfold(output, target, overlap)
        else:
            output = output[0]

        # Fade-out at the end to avoid signal cutting out suddenly
小湉湉's avatar
小湉湉 已提交
423
        fade_out = paddle.linspace(1, 0, 10 * self.hop_length)
小湉湉's avatar
小湉湉 已提交
424
        output = output[:wave_len]
小湉湉's avatar
小湉湉 已提交
425
        output[-10 * self.hop_length:] *= fade_out
小湉湉's avatar
小湉湉 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

        self.train()

        # 增加 C_out 维度
        return output.unsqueeze(-1)

    def _flatten_parameters(self):
        [m.flatten_parameters() for m in self._to_flatten]

    def pad_tensor(self, x, pad, side='both'):
        '''
        Parameters
        ----------
        x : Tensor
            mel, [1, n_frames, 80]
        pad : int
        side : str 
            'both', 'before' or 'after'
        Returns
        ----------
        Tensor
        '''
448 449 450
        b, t, _ = paddle.shape(x)
        # for dygraph to static graph
        c = x.shape[-1]
小湉湉's avatar
小湉湉 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        total = t + 2 * pad if side == 'both' else t + pad
        padded = paddle.zeros([b, total, c])
        if side == 'before' or side == 'both':
            padded[:, pad:pad + t, :] = x
        elif side == 'after':
            padded[:, :t, :] = x
        return padded

    def fold_with_overlap(self, x, target, overlap):
        '''
        Fold the tensor with overlap for quick batched inference.
        Overlap will be used for crossfading in xfade_and_unfold()

        Parameters
        ----------
        x : Tensor
            Upsampled conditioning features. mels or aux
            shape=(1, T, features)
            mels: [1, T, 80]
            aux: [1, T, 128]
        target : int
            Target timesteps for each index of batch
        overlap : int
            Timesteps for both xfade and rnn warmup
            overlap = hop_length * 2

        Returns
        ----------
        Tensor 
            shape=(num_folds, target + 2 * overlap, features)
            num_flods = (time_seq - overlap) // (target + overlap)
            mel: [num_folds, target + 2 * overlap, 80]
            aux: [num_folds, target + 2 * overlap, 128]

        Details
        ----------
        x = [[h1, h2, ... hn]]

        Where each h is a vector of conditioning features

        Eg: target=2, overlap=1 with x.size(1)=10

        folded = [[h1, h2, h3, h4],
                  [h4, h5, h6, h7],
                  [h7, h8, h9, h10]]
        '''

        _, total_len, features = paddle.shape(x)

        # Calculate variables needed
        num_folds = (total_len - overlap) // (target + overlap)
        extended_len = num_folds * (overlap + target) + overlap
        remaining = total_len - extended_len

        # Pad if some time steps poking out
        if remaining != 0:
            num_folds += 1
            padding = target + 2 * overlap - remaining
            x = self.pad_tensor(x, padding, side='after')

        folded = paddle.zeros([num_folds, target + 2 * overlap, features])

        # Get the values for the folded tensor
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            folded[i] = x[0][start:end, :]
        return folded

    def xfade_and_unfold(self, y, target: int=12000, overlap: int=600):
        ''' Applies a crossfade and unfolds into a 1d array.

        Parameters
        ----------
        y : Tensor
            Batched sequences of audio samples
            shape=(num_folds, target + 2 * overlap)
528
            dtype=paddle.float32
小湉湉's avatar
小湉湉 已提交
529 530 531 532 533 534 535 536
        overlap : int
            Timesteps for both xfade and rnn warmup

        Returns
        ----------
        Tensor
            audio samples in a 1d array
            shape=(total_len)
537
            dtype=paddle.float32
小湉湉's avatar
小湉湉 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

        Details
        ----------
        y = [[seq1],
            [seq2],
            [seq3]]

        Apply a gain envelope at both ends of the sequences

        y = [[seq1_in, seq1_target, seq1_out],
            [seq2_in, seq2_target, seq2_out],
            [seq3_in, seq3_target, seq3_out]]

        Stagger and add up the groups of samples:

        [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]

        '''
        # num_folds = (total_len - overlap) // (target + overlap)
557
        num_folds, length = paddle.shape(y)
小湉湉's avatar
小湉湉 已提交
558 559 560 561 562 563
        target = length - 2 * overlap
        total_len = num_folds * (target + overlap) + overlap

        # Need some silence for the run warmup
        slience_len = overlap // 2
        fade_len = overlap - slience_len
564 565
        slience = paddle.zeros([slience_len], dtype=paddle.float32)
        linear = paddle.ones([fade_len], dtype=paddle.float32)
小湉湉's avatar
小湉湉 已提交
566 567 568

        # Equal power crossfade
        # fade_in increase from 0 to 1, fade_out reduces from 1 to 0
569
        t = paddle.linspace(-1, 1, fade_len, dtype=paddle.float32)
小湉湉's avatar
小湉湉 已提交
570 571 572 573 574 575 576 577 578 579
        fade_in = paddle.sqrt(0.5 * (1 + t))
        fade_out = paddle.sqrt(0.5 * (1 - t))
        # Concat the silence to the fades
        fade_out = paddle.concat([linear, fade_out])
        fade_in = paddle.concat([slience, fade_in])

        # Apply the gain to the overlap samples
        y[:, :overlap] *= fade_in
        y[:, -overlap:] *= fade_out

580
        unfolded = paddle.zeros([total_len], dtype=paddle.float32)
小湉湉's avatar
小湉湉 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

        # Loop to add up all the samples
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            unfolded[start:end] += y[i]

        return unfolded

    def gen_display(self, i, seq_len, b_size, start):
        gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
        pbar = self.progbar(i, seq_len)
        msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
        sys.stdout.write(f"\r{msg}")

    def progbar(self, i, n, size=16):
        done = int(i * size) // n
        bar = ''
        for i in range(size):
            bar += '█' if i <= done else '░'
        return bar
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617


class WaveRNNInference(nn.Layer):
    def __init__(self, normalizer, wavernn):
        super().__init__()
        self.normalizer = normalizer
        self.wavernn = wavernn

    def forward(self,
                logmel,
                batched: bool=True,
                target: int=12000,
                overlap: int=600,
                mu_law: bool=True,
                gen_display: bool=False):
        normalized_mel = self.normalizer(logmel)
618

619
        wav = self.wavernn.generate(
620 621 622 623 624 625 626
            normalized_mel, )
        # batched=batched,
        # target=target,
        # overlap=overlap,
        # mu_law=mu_law,
        # gen_display=gen_display)

627
        return wav