wavernn.py 20.3 KB
Newer Older
小湉湉's avatar
小湉湉 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import time
from typing import List

import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F

小湉湉's avatar
小湉湉 已提交
23
from paddlespeech.t2s.audio.codec import decode_mu_law
小湉湉's avatar
小湉湉 已提交
24 25 26 27 28 29 30
from paddlespeech.t2s.modules.losses import sample_from_discretized_mix_logistic
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.upsample import Stretch2D


class ResBlock(nn.Layer):
    def __init__(self, dims):
小湉湉's avatar
小湉湉 已提交
31
        super().__init__()
小湉湉's avatar
小湉湉 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        self.conv1 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
        self.conv2 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
        self.batch_norm1 = nn.BatchNorm1D(dims)
        self.batch_norm2 = nn.BatchNorm1D(dims)

    def forward(self, x):
        '''
        conv -> bn -> relu -> conv -> bn + residual connection
        '''
        residual = x
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        return x + residual


class MelResNet(nn.Layer):
    def __init__(self,
                 res_blocks: int=10,
                 compute_dims: int=128,
                 res_out_dims: int=128,
                 aux_channels: int=80,
                 aux_context_window: int=0):
        super().__init__()
        k_size = aux_context_window * 2 + 1
        # pay attention here, the dim reduces aux_context_window * 2
        self.conv_in = nn.Conv1D(
            aux_channels, compute_dims, kernel_size=k_size, bias_attr=False)
        self.batch_norm = nn.BatchNorm1D(compute_dims)
        self.layers = nn.LayerList()
        for _ in range(res_blocks):
            self.layers.append(ResBlock(compute_dims))
        self.conv_out = nn.Conv1D(compute_dims, res_out_dims, kernel_size=1)

    def forward(self, x):
        '''
70 71 72 73
        Args:
            x (Tensor): Input tensor (B, in_dims, T).
        Returns:
            Tensor: Output tensor (B, res_out_dims, T).
小湉湉's avatar
小湉湉 已提交
74
        '''
75

小湉湉's avatar
小湉湉 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        x = self.conv_in(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        for f in self.layers:
            x = f(x)
        x = self.conv_out(x)
        return x


class UpsampleNetwork(nn.Layer):
    def __init__(self,
                 aux_channels: int=80,
                 upsample_scales: List[int]=[4, 5, 3, 5],
                 compute_dims: int=128,
                 res_blocks: int=10,
                 res_out_dims: int=128,
                 aux_context_window: int=2):
        super().__init__()
        # total_scale is the total Up sampling multiple
        total_scale = np.prod(upsample_scales)
        # TODO pad*total_scale is numpy.int64
        self.indent = int(aux_context_window * total_scale)
        self.resnet = MelResNet(
            res_blocks=res_blocks,
            aux_channels=aux_channels,
            compute_dims=compute_dims,
            res_out_dims=res_out_dims,
            aux_context_window=aux_context_window)
        self.resnet_stretch = Stretch2D(total_scale, 1)
        self.up_layers = nn.LayerList()
        for scale in upsample_scales:
            k_size = (1, scale * 2 + 1)
            padding = (0, scale)
            stretch = Stretch2D(scale, 1)

            conv = nn.Conv2D(
                1, 1, kernel_size=k_size, padding=padding, bias_attr=False)
            weight_ = paddle.full_like(conv.weight, 1. / k_size[1])
            conv.weight.set_value(weight_)
            self.up_layers.append(stretch)
            self.up_layers.append(conv)

    def forward(self, m):
        '''
120 121 122 123 124
        Args:
            c (Tensor): Input tensor (B, C_aux, T).
        Returns:
            Tensor: Output tensor (B, (T - 2 * pad) *  prob(upsample_scales), C_aux).
            Tensor: Output tensor (B, (T - 2 * pad) *  prob(upsample_scales), res_out_dims).
小湉湉's avatar
小湉湉 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        '''
        # aux: [B, C_aux, T] 
        # -> [B, res_out_dims, T - 2 * aux_context_window]
        # -> [B, 1, res_out_dims, T - 2 * aux_context_window]
        aux = self.resnet(m).unsqueeze(1)
        # aux: [B, 1, res_out_dims, T - 2 * aux_context_window]
        # -> [B, 1, res_out_dims, (T - 2 * pad) *  prob(upsample_scales)]
        aux = self.resnet_stretch(aux)
        # aux: [B, 1, res_out_dims, T * prob(upsample_scales)] 
        # -> [B, res_out_dims, T * prob(upsample_scales)]
        aux = aux.squeeze(1)
        # m: [B, C_aux, T] -> [B, 1, C_aux, T]
        m = m.unsqueeze(1)
        for f in self.up_layers:
            m = f(m)
        # m: [B, 1, C_aux, T*prob(upsample_scales)]
        # -> [B, C_aux, T * prob(upsample_scales)]
        # -> [B, C_aux, (T - 2 * pad) * prob(upsample_scales)]
        m = m.squeeze(1)[:, :, self.indent:-self.indent]
        # m: [B, (T - 2 * pad) * prob(upsample_scales), C_aux]
        # aux: [B, (T - 2 * pad) * prob(upsample_scales), res_out_dims]
        return m.transpose([0, 2, 1]), aux.transpose([0, 2, 1])


class WaveRNN(nn.Layer):
    def __init__(
            self,
            rnn_dims: int=512,
            fc_dims: int=512,
            bits: int=9,
            aux_context_window: int=2,
            upsample_scales: List[int]=[4, 5, 3, 5],
            aux_channels: int=80,
            compute_dims: int=128,
            res_out_dims: int=128,
            res_blocks: int=10,
            hop_length: int=300,
            sample_rate: int=24000,
            mode='RAW',
            init_type: str="xavier_uniform", ):
        '''
166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Args:
            rnn_dims (int, optional): Hidden dims of RNN Layers.
            fc_dims (int, optional): Dims of FC Layers.
            bits (int, optional): bit depth of signal.
            aux_context_window (int, optional): The context window size of the first convolution applied to the 
                auxiliary input, by default 2
            upsample_scales (List[int], optional): Upsample scales of the upsample network.
            aux_channels (int, optional): Auxiliary channel of the residual blocks.
            compute_dims (int, optional): Dims of Conv1D in MelResNet.
            res_out_dims (int, optional): Dims of output in MelResNet.
            res_blocks (int, optional): Number of residual blocks.
            mode (str, optional): Output mode of the WaveRNN vocoder. 
                `MOL` for Mixture of Logistic Distribution, and `RAW` for quantized bits as the model's output.
            init_type (str): How to initialize parameters.
小湉湉's avatar
小湉湉 已提交
180 181 182 183 184 185 186
        '''
        super().__init__()
        self.mode = mode
        self.aux_context_window = aux_context_window
        if self.mode == 'RAW':
            self.n_classes = 2**bits
        elif self.mode == 'MOL':
小湉湉's avatar
小湉湉 已提交
187
            self.n_classes = 10 * 3
小湉湉's avatar
小湉湉 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        else:
            RuntimeError('Unknown model mode value - ', self.mode)

        # List of rnns to call 'flatten_parameters()' on
        self._to_flatten = []

        self.rnn_dims = rnn_dims
        self.aux_dims = res_out_dims // 4
        self.hop_length = hop_length
        self.sample_rate = sample_rate

        # initialize parameters
        initialize(self, init_type)

        self.upsample = UpsampleNetwork(
            aux_channels=aux_channels,
            upsample_scales=upsample_scales,
            compute_dims=compute_dims,
            res_blocks=res_blocks,
            res_out_dims=res_out_dims,
            aux_context_window=aux_context_window)
        self.I = nn.Linear(aux_channels + self.aux_dims + 1, rnn_dims)

        self.rnn1 = nn.GRU(rnn_dims, rnn_dims)
        self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims)
213

小湉湉's avatar
小湉湉 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
        self._to_flatten += [self.rnn1, self.rnn2]

        self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
        self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
        self.fc3 = nn.Linear(fc_dims, self.n_classes)

        # Avoid fragmentation of RNN parameters and associated warning
        self._flatten_parameters()

        nn.initializer.set_global_initializer(None)

    def forward(self, x, c):
        '''
227 228 229 230 231 232 233
        Args:
            x (Tensor): wav sequence, [B, T]
            c (Tensor): mel spectrogram [B, C_aux, T']

            T = (T' - 2 * aux_context_window ) * hop_length
        Returns:
            Tensor: [B, T, n_classes]
小湉湉's avatar
小湉湉 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        '''
        # Although we `_flatten_parameters()` on init, when using DataParallel
        # the model gets replicated, making it no longer guaranteed that the
        # weights are contiguous in GPU memory. Hence, we must call it again
        self._flatten_parameters()

        bsize = paddle.shape(x)[0]
        h1 = paddle.zeros([1, bsize, self.rnn_dims])
        h2 = paddle.zeros([1, bsize, self.rnn_dims])
        # c: [B, T, C_aux]
        # aux: [B, T, res_out_dims]
        c, aux = self.upsample(c)

        aux_idx = [self.aux_dims * i for i in range(5)]
        a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
        a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
        a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
        a4 = aux[:, :, aux_idx[3]:aux_idx[4]]

        x = paddle.concat([x.unsqueeze(-1), c, a1], axis=2)
        x = self.I(x)
        res = x
        x, _ = self.rnn1(x, h1)

        x = x + res
        res = x
        x = paddle.concat([x, a2], axis=2)
        x, _ = self.rnn2(x, h2)

        x = x + res
        x = paddle.concat([x, a3], axis=2)
        x = F.relu(self.fc1(x))

        x = paddle.concat([x, a4], axis=2)
        x = F.relu(self.fc2(x))

        return self.fc3(x)

    @paddle.no_grad()
    def generate(self,
                 c,
                 batched: bool=True,
                 target: int=12000,
                 overlap: int=600,
                 mu_law: bool=True,
                 gen_display: bool=False):
        """
281 282 283 284 285 286 287 288
        Args:
            c(Tensor): input mels, (T', C_aux)
            batched(bool): generate in batch or not
            target(int): target number of samples to be generated in each batch entry
            overlap(int): number of samples for crossfading between batches
            mu_law(bool)
        Returns: 
            wav sequence: Output (T' * prod(upsample_scales), out_channels, C_out).
小湉湉's avatar
小湉湉 已提交
289 290 291 292 293 294 295 296
        """

        self.eval()

        mu_law = mu_law if self.mode == 'RAW' else False

        output = []
        start = time.time()
297

小湉湉's avatar
小湉湉 已提交
298 299 300
        # pseudo batch
        # (T, C_aux) -> (1, C_aux, T)
        c = paddle.transpose(c, [1, 0]).unsqueeze(0)
301
        T = paddle.shape(c)[-1]
小湉湉's avatar
小湉湉 已提交
302
        wave_len = T * self.hop_length
小湉湉's avatar
小湉湉 已提交
303 304 305 306
        # TODO remove two transpose op by modifying function pad_tensor
        c = self.pad_tensor(
            c.transpose([0, 2, 1]), pad=self.aux_context_window,
            side='both').transpose([0, 2, 1])
307

小湉湉's avatar
小湉湉 已提交
308 309 310 311 312 313 314
        c, aux = self.upsample(c)

        if batched:
            # (num_folds, target + 2 * overlap, features)
            c = self.fold_with_overlap(c, target, overlap)
            aux = self.fold_with_overlap(aux, target, overlap)

315 316 317 318 319 320 321
        # for dygraph to static graph, if use seq_len of `b_size, seq_len, _ = paddle.shape(c)` in for
        # will not get TensorArray
        # see https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/case_analysis_cn.html#list-lodtensorarray
        # b_size, seq_len, _ = paddle.shape(c)
        b_size = paddle.shape(c)[0]
        seq_len = paddle.shape(c)[1]

小湉湉's avatar
小湉湉 已提交
322 323 324 325 326 327 328 329 330
        h1 = paddle.zeros([b_size, self.rnn_dims])
        h2 = paddle.zeros([b_size, self.rnn_dims])
        x = paddle.zeros([b_size, 1])

        d = self.aux_dims
        aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]

        for i in range(seq_len):
            m_t = c[:, i, :]
331 332 333 334 335 336
            # for dygraph to static graph
            # a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
            a1_t = aux_split[0][:, i, :]
            a2_t = aux_split[1][:, i, :]
            a3_t = aux_split[2][:, i, :]
            a4_t = aux_split[3][:, i, :]
小湉湉's avatar
小湉湉 已提交
337 338
            x = paddle.concat([x, m_t, a1_t], axis=1)
            x = self.I(x)
339 340
            # use GRUCell here
            h1, _ = self.rnn1[0].cell(x, h1)
小湉湉's avatar
小湉湉 已提交
341 342
            x = x + h1
            inp = paddle.concat([x, a2_t], axis=1)
343 344
            # use GRUCell here
            h2, _ = self.rnn2[0].cell(inp, h2)
小湉湉's avatar
小湉湉 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

            x = x + h2
            x = paddle.concat([x, a3_t], axis=1)
            x = F.relu(self.fc1(x))

            x = paddle.concat([x, a4_t], axis=1)
            x = F.relu(self.fc2(x))

            logits = self.fc3(x)

            if self.mode == 'MOL':
                sample = sample_from_discretized_mix_logistic(
                    logits.unsqueeze(0).transpose([0, 2, 1]))
                output.append(sample.reshape([-1]))
                x = sample.transpose([1, 0, 2])

            elif self.mode == 'RAW':
                posterior = F.softmax(logits, axis=1)
                distrib = paddle.distribution.Categorical(posterior)
                # corresponding operate [np.floor((fx + 1) / 2 * mu + 0.5)] in enocde_mu_law
小湉湉's avatar
小湉湉 已提交
365 366
                # distrib.sample([1])[0].cast('float32'): [0, 2**bits-1]
                # sample: [-1, 1]
小湉湉's avatar
小湉湉 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                sample = 2 * distrib.sample([1])[0].cast('float32') / (
                    self.n_classes - 1.) - 1.
                output.append(sample)
                x = sample.unsqueeze(-1)
            else:
                raise RuntimeError('Unknown model mode value - ', self.mode)

            if gen_display:
                if i % 1000 == 0:
                    self.gen_display(i, int(seq_len), int(b_size), start)

        output = paddle.stack(output).transpose([1, 0])

        if mu_law:
            output = decode_mu_law(output, self.n_classes, False)

        if batched:
            output = self.xfade_and_unfold(output, target, overlap)
        else:
            output = output[0]

        # Fade-out at the end to avoid signal cutting out suddenly
小湉湉's avatar
小湉湉 已提交
389
        fade_out = paddle.linspace(1, 0, 10 * self.hop_length)
小湉湉's avatar
小湉湉 已提交
390
        output = output[:wave_len]
小湉湉's avatar
小湉湉 已提交
391
        output[-10 * self.hop_length:] *= fade_out
小湉湉's avatar
小湉湉 已提交
392 393 394 395 396 397 398 399 400 401 402

        self.train()

        # 增加 C_out 维度
        return output.unsqueeze(-1)

    def _flatten_parameters(self):
        [m.flatten_parameters() for m in self._to_flatten]

    def pad_tensor(self, x, pad, side='both'):
        '''
403 404 405 406 407 408 409
        Args:
            x(Tensor): mel, [1, n_frames, 80]
            pad(int): 
            side(str, optional):  (Default value = 'both')

        Returns:
            Tensor
小湉湉's avatar
小湉湉 已提交
410
        '''
411 412 413
        b, t, _ = paddle.shape(x)
        # for dygraph to static graph
        c = x.shape[-1]
小湉湉's avatar
小湉湉 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
        total = t + 2 * pad if side == 'both' else t + pad
        padded = paddle.zeros([b, total, c])
        if side == 'before' or side == 'both':
            padded[:, pad:pad + t, :] = x
        elif side == 'after':
            padded[:, :t, :] = x
        return padded

    def fold_with_overlap(self, x, target, overlap):
        '''
        Fold the tensor with overlap for quick batched inference.
        Overlap will be used for crossfading in xfade_and_unfold()

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        Args:
            x(Tensor): Upsampled conditioning features. mels or aux
                shape=(1, T, features)
                mels: [1, T, 80]
                aux: [1, T, 128]
            target(int): Target timesteps for each index of batch
            overlap(int): Timesteps for both xfade and rnn warmup

        Returns:
            Tensor: 
                shape=(num_folds, target + 2 * overlap, features)
                num_flods = (time_seq - overlap) // (target + overlap)
                mel: [num_folds, target + 2 * overlap, 80]
                aux: [num_folds, target + 2 * overlap, 128]

        Details:
            x = [[h1, h2, ... hn]]
            Where each h is a vector of conditioning features
            Eg: target=2, overlap=1 with x.size(1)=10

            folded = [[h1, h2, h3, h4],
                    [h4, h5, h6, h7],
                    [h7, h8, h9, h10]]
小湉湉's avatar
小湉湉 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        '''

        _, total_len, features = paddle.shape(x)

        # Calculate variables needed
        num_folds = (total_len - overlap) // (target + overlap)
        extended_len = num_folds * (overlap + target) + overlap
        remaining = total_len - extended_len

        # Pad if some time steps poking out
        if remaining != 0:
            num_folds += 1
            padding = target + 2 * overlap - remaining
            x = self.pad_tensor(x, padding, side='after')

        folded = paddle.zeros([num_folds, target + 2 * overlap, features])

        # Get the values for the folded tensor
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            folded[i] = x[0][start:end, :]
        return folded

    def xfade_and_unfold(self, y, target: int=12000, overlap: int=600):
        ''' Applies a crossfade and unfolds into a 1d array.

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        Args:
            y (Tensor): 
                Batched sequences of audio samples
                shape=(num_folds, target + 2 * overlap)
                dtype=paddle.float32
            overlap (int): Timesteps for both xfade and rnn warmup

        Returns:
            Tensor
                audio samples in a 1d array
                shape=(total_len)
                dtype=paddle.float32

        Details:
            y = [[seq1],
                [seq2],
                [seq3]]

            Apply a gain envelope at both ends of the sequences

            y = [[seq1_in, seq1_target, seq1_out],
                [seq2_in, seq2_target, seq2_out],
                [seq3_in, seq3_target, seq3_out]]

            Stagger and add up the groups of samples:

            [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
小湉湉's avatar
小湉湉 已提交
504 505 506

        '''
        # num_folds = (total_len - overlap) // (target + overlap)
507
        num_folds, length = paddle.shape(y)
小湉湉's avatar
小湉湉 已提交
508 509 510 511
        target = length - 2 * overlap
        total_len = num_folds * (target + overlap) + overlap

        # Need some silence for the run warmup
512 513
        slience_len = 0
        linear_len = slience_len
小湉湉's avatar
小湉湉 已提交
514
        fade_len = overlap - slience_len
515
        slience = paddle.zeros([slience_len], dtype=paddle.float32)
516
        linear = paddle.ones([linear_len], dtype=paddle.float32)
小湉湉's avatar
小湉湉 已提交
517 518 519

        # Equal power crossfade
        # fade_in increase from 0 to 1, fade_out reduces from 1 to 0
520 521 522 523 524 525
        sigmoid_scale = 2.3
        t = paddle.linspace(
            -sigmoid_scale, sigmoid_scale, fade_len, dtype=paddle.float32)
        # sigmoid 曲线应该更好
        fade_in = paddle.nn.functional.sigmoid(t)
        fade_out = 1 - paddle.nn.functional.sigmoid(t)
小湉湉's avatar
小湉湉 已提交
526 527 528 529 530 531 532 533
        # Concat the silence to the fades
        fade_out = paddle.concat([linear, fade_out])
        fade_in = paddle.concat([slience, fade_in])

        # Apply the gain to the overlap samples
        y[:, :overlap] *= fade_in
        y[:, -overlap:] *= fade_out

534
        unfolded = paddle.zeros([total_len], dtype=paddle.float32)
小湉湉's avatar
小湉湉 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

        # Loop to add up all the samples
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            unfolded[start:end] += y[i]

        return unfolded

    def gen_display(self, i, seq_len, b_size, start):
        gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
        pbar = self.progbar(i, seq_len)
        msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
        sys.stdout.write(f"\r{msg}")

    def progbar(self, i, n, size=16):
        done = int(i * size) // n
        bar = ''
        for i in range(size):
            bar += '█' if i <= done else '░'
        return bar
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571


class WaveRNNInference(nn.Layer):
    def __init__(self, normalizer, wavernn):
        super().__init__()
        self.normalizer = normalizer
        self.wavernn = wavernn

    def forward(self,
                logmel,
                batched: bool=True,
                target: int=12000,
                overlap: int=600,
                mu_law: bool=True,
                gen_display: bool=False):
        normalized_mel = self.normalizer(logmel)
572

573
        wav = self.wavernn.generate(
574 575 576 577 578 579 580
            normalized_mel, )
        # batched=batched,
        # target=target,
        # overlap=overlap,
        # mu_law=mu_law,
        # gen_display=gen_display)

581
        return wav