提交 f4675379 编写于 作者: N Nicola Tuveri 提交者: Matt Caswell
上级 a067a870
...@@ -107,7 +107,7 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre) ...@@ -107,7 +107,7 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
BN_set_flags((P)->Z, (flags)); \ BN_set_flags((P)->Z, (flags)); \
} while(0) } while(0)
/* /*-
* This functions computes (in constant time) a point multiplication over the * This functions computes (in constant time) a point multiplication over the
* EC group. * EC group.
* *
...@@ -128,8 +128,9 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre) ...@@ -128,8 +128,9 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
* *
* Returns 1 on success, 0 otherwise. * Returns 1 on success, 0 otherwise.
*/ */
static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
const EC_POINT *point, BN_CTX *ctx) const BIGNUM *scalar, const EC_POINT *point,
BN_CTX *ctx)
{ {
int i, order_bits, group_top, kbit, pbit, Z_is_one; int i, order_bits, group_top, kbit, pbit, Z_is_one;
EC_POINT *s = NULL; EC_POINT *s = NULL;
...@@ -185,11 +186,11 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc ...@@ -185,11 +186,11 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc
BN_set_flags(k, BN_FLG_CONSTTIME); BN_set_flags(k, BN_FLG_CONSTTIME);
if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) { if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
/* /*-
* this is an unusual input, and we don't guarantee * this is an unusual input, and we don't guarantee
* constant-timeness * constant-timeness
*/ */
if(!BN_nnmod(k, k, group->order, ctx)) if (!BN_nnmod(k, k, group->order, ctx))
goto err; goto err;
} }
...@@ -234,7 +235,7 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc ...@@ -234,7 +235,7 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc
(b)->Z_is_one ^= (t); \ (b)->Z_is_one ^= (t); \
} while(0) } while(0)
/* /*-
* The ladder step, with branches, is * The ladder step, with branches, is
* *
* k[i] == 0: S = add(R, S), R = dbl(R) * k[i] == 0: S = add(R, S), R = dbl(R)
...@@ -283,11 +284,11 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc ...@@ -283,11 +284,11 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc
* So instead of two contiguous swaps, you can merge the condition * So instead of two contiguous swaps, you can merge the condition
* bits and do a single swap. * bits and do a single swap.
* *
* k[i]    k[i-1]    Outcome * k[i] k[i-1] Outcome
* 0       0         No Swap * 0 0 No Swap
* 0       1         Swap * 0 1 Swap
* 1       0         Swap * 1 0 Swap
* 1       1         No Swap * 1 1 No Swap
* *
* This is XOR. pbit tracks the previous bit of k. * This is XOR. pbit tracks the previous bit of k.
*/ */
...@@ -311,13 +312,14 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc ...@@ -311,13 +312,14 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc
ret = 1; ret = 1;
err: err:
EC_POINT_free(s); EC_POINT_free(s);
BN_CTX_end(ctx); BN_CTX_end(ctx);
BN_CTX_free(new_ctx); BN_CTX_free(new_ctx);
return ret; return ret;
} }
#undef EC_POINT_BN_set_flags #undef EC_POINT_BN_set_flags
/* /*
...@@ -370,31 +372,32 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, ...@@ -370,31 +372,32 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
* precomputation is not available */ * precomputation is not available */
int ret = 0; int ret = 0;
/* Handle the common cases where the scalar is secret, enforcing a /*-
* constant time scalar multiplication algorithm. * Handle the common cases where the scalar is secret, enforcing a constant
* time scalar multiplication algorithm.
*/ */
if ((scalar != NULL) && (num == 0)) { if ((scalar != NULL) && (num == 0)) {
/* In this case we want to compute scalar * GeneratorPoint: /*-
* this codepath is reached most prominently by (ephemeral) key * In this case we want to compute scalar * GeneratorPoint: this
* generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, * codepath is reached most prominently by (ephemeral) key generation
* ECDH keygen/first half), where the scalar is always secret. * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
* This is why we ignore if BN_FLG_CONSTTIME is actually set and we * keygen/first half), where the scalar is always secret. This is why
* always call the constant time version. * we ignore if BN_FLG_CONSTTIME is actually set and we always call the
* constant time version.
*/ */
return ec_mul_consttime(group, r, scalar, NULL, ctx); return ec_mul_consttime(group, r, scalar, NULL, ctx);
} }
if ((scalar == NULL) && (num == 1)) { if ((scalar == NULL) && (num == 1)) {
/* In this case we want to compute scalar * GenericPoint: /*-
* this codepath is reached most prominently by the second half of * In this case we want to compute scalar * GenericPoint: this codepath
* ECDH, where the secret scalar is multiplied by the peer's public * is reached most prominently by the second half of ECDH, where the
* point. * secret scalar is multiplied by the peer's public point. To protect
* To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
* actually set and we always call the constant time version. * we always call the constant time version.
*/ */
return ec_mul_consttime(group, r, scalars[0], points[0], ctx); return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
} }
if (group->meth != r->meth) { if (group->meth != r->meth) {
ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
return 0; return 0;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册