提交 a067a870 编写于 作者: B Billy Brumley 提交者: Matt Caswell

ladder description: why it works

Reviewed-by: NAndy Polyakov <appro@openssl.org>
Reviewed-by: NMatt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6009)
上级 36bed230
...@@ -111,6 +111,8 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre) ...@@ -111,6 +111,8 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
* This functions computes (in constant time) a point multiplication over the * This functions computes (in constant time) a point multiplication over the
* EC group. * EC group.
* *
* At a high level, it is Montgomery ladder with conditional swaps.
*
* It performs either a fixed scalar point multiplication * It performs either a fixed scalar point multiplication
* (scalar * generator) * (scalar * generator)
* when point is NULL, or a generic scalar point multiplication * when point is NULL, or a generic scalar point multiplication
...@@ -232,6 +234,64 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc ...@@ -232,6 +234,64 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *sc
(b)->Z_is_one ^= (t); \ (b)->Z_is_one ^= (t); \
} while(0) } while(0)
/*
* The ladder step, with branches, is
*
* k[i] == 0: S = add(R, S), R = dbl(R)
* k[i] == 1: R = add(S, R), S = dbl(S)
*
* Swapping R, S conditionally on k[i] leaves you with state
*
* k[i] == 0: T, U = R, S
* k[i] == 1: T, U = S, R
*
* Then perform the ECC ops.
*
* U = add(T, U)
* T = dbl(T)
*
* Which leaves you with state
*
* k[i] == 0: U = add(R, S), T = dbl(R)
* k[i] == 1: U = add(S, R), T = dbl(S)
*
* Swapping T, U conditionally on k[i] leaves you with state
*
* k[i] == 0: R, S = T, U
* k[i] == 1: R, S = U, T
*
* Which leaves you with state
*
* k[i] == 0: S = add(R, S), R = dbl(R)
* k[i] == 1: R = add(S, R), S = dbl(S)
*
* So we get the same logic, but instead of a branch it's a
* conditional swap, followed by ECC ops, then another conditional swap.
*
* Optimization: The end of iteration i and start of i-1 looks like
*
* ...
* CSWAP(k[i], R, S)
* ECC
* CSWAP(k[i], R, S)
* (next iteration)
* CSWAP(k[i-1], R, S)
* ECC
* CSWAP(k[i-1], R, S)
* ...
*
* So instead of two contiguous swaps, you can merge the condition
* bits and do a single swap.
*
* k[i]    k[i-1]    Outcome
* 0       0         No Swap
* 0       1         Swap
* 1       0         Swap
* 1       1         No Swap
*
* This is XOR. pbit tracks the previous bit of k.
*/
for (i = order_bits - 1; i >= 0; i--) { for (i = order_bits - 1; i >= 0; i--) {
kbit = BN_is_bit_set(k, i) ^ pbit; kbit = BN_is_bit_set(k, i) ^ pbit;
EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册