ec_mult.c 30.1 KB
Newer Older
1
/*
R
Richard Levitte 已提交
2
 * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
R
Rich Salz 已提交
5 6 7 8
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
9
 */
R
Rich Salz 已提交
10

11
#include <string.h>
12 13
#include <openssl/err.h>

14
#include "internal/cryptlib.h"
15
#include "crypto/bn.h"
16
#include "ec_local.h"
17
#include "internal/refcount.h"
18

19
/*
F
FdaSilvaYY 已提交
20
 * This file implements the wNAF-based interleaving multi-exponentiation method
R
Rich Salz 已提交
21 22 23 24 25 26 27
 * Formerly at:
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
 * You might now find it here:
 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
 * For multiplication with precomputation, we use wNAF splitting, formerly at:
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28
 */
29

30
/* structure for precomputed multiples of the generator */
31
struct ec_pre_comp_st {
32 33 34 35 36 37 38 39 40
    const EC_GROUP *group;      /* parent EC_GROUP object */
    size_t blocksize;           /* block size for wNAF splitting */
    size_t numblocks;           /* max. number of blocks for which we have
                                 * precomputation */
    size_t w;                   /* window size */
    EC_POINT **points;          /* array with pre-calculated multiples of
                                 * generator: 'num' pointers to EC_POINT
                                 * objects followed by a NULL */
    size_t num;                 /* numblocks * 2^(w-1) */
41
    CRYPTO_REF_COUNT references;
42
    CRYPTO_RWLOCK *lock;
43
};
44 45

static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46 47 48 49 50 51
{
    EC_PRE_COMP *ret = NULL;

    if (!group)
        return NULL;

R
Rich Salz 已提交
52
    ret = OPENSSL_zalloc(sizeof(*ret));
53
    if (ret == NULL) {
54 55 56
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        return ret;
    }
57

58 59 60 61
    ret->group = group;
    ret->blocksize = 8;         /* default */
    ret->w = 4;                 /* default */
    ret->references = 1;
62 63 64 65 66 67 68

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
69 70
    return ret;
}
71

72
EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73
{
74
    int i;
75
    if (pre != NULL)
76
        CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77
    return pre;
78
}
79

80
void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81
{
82 83 84 85 86
    int i;

    if (pre == NULL)
        return;

87
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88 89
    REF_PRINT_COUNT("EC_ec", pre);
    if (i > 0)
90
        return;
91
    REF_ASSERT_ISNT(i < 0);
92

93 94
    if (pre->points != NULL) {
        EC_POINT **pts;
95

96 97
        for (pts = pre->points; *pts != NULL; pts++)
            EC_POINT_free(*pts);
98 99
        OPENSSL_free(pre->points);
    }
100
    CRYPTO_THREAD_lock_free(pre->lock);
101 102
    OPENSSL_free(pre);
}
103

N
Nicola Tuveri 已提交
104
#define EC_POINT_BN_set_flags(P, flags) do { \
105 106 107 108 109
    BN_set_flags((P)->X, (flags)); \
    BN_set_flags((P)->Y, (flags)); \
    BN_set_flags((P)->Z, (flags)); \
} while(0)

N
Nicola Tuveri 已提交
110
/*-
111 112 113
 * This functions computes a single point multiplication over the EC group,
 * using, at a high level, a Montgomery ladder with conditional swaps, with
 * various timing attack defenses.
B
Billy Brumley 已提交
114
 *
115
 * It performs either a fixed point multiplication
116
 *          (scalar * generator)
117
 * when point is NULL, or a variable point multiplication
118 119 120
 *          (scalar * point)
 * when point is not NULL.
 *
121 122
 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
 * constant time bets are off (where n is the cardinality of the EC group).
123
 *
124 125 126
 * This function expects `group->order` and `group->cardinality` to be well
 * defined and non-zero: it fails with an error code otherwise.
 *
127 128 129 130
 * NB: This says nothing about the constant-timeness of the ladder step
 * implementation (i.e., the default implementation is based on EC_POINT_add and
 * EC_POINT_dbl, which of course are not constant time themselves) or the
 * underlying multiprecision arithmetic.
131
 *
132
 * The product is stored in `r`.
133
 *
134 135 136
 * This is an internal function: callers are in charge of ensuring that the
 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
 *
137 138
 * Returns 1 on success, 0 otherwise.
 */
139 140 141
int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
                         const BIGNUM *scalar, const EC_POINT *point,
                         BN_CTX *ctx)
142
{
143
    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
144
    EC_POINT *p = NULL;
145 146 147
    EC_POINT *s = NULL;
    BIGNUM *k = NULL;
    BIGNUM *lambda = NULL;
148
    BIGNUM *cardinality = NULL;
N
Nicola Tuveri 已提交
149
    int ret = 0;
150

151 152 153 154
    /* early exit if the input point is the point at infinity */
    if (point != NULL && EC_POINT_is_at_infinity(group, point))
        return EC_POINT_set_to_infinity(group, r);

155 156
    if (BN_is_zero(group->order)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
157
        return 0;
158 159 160 161 162
    }
    if (BN_is_zero(group->cofactor)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
        return 0;
    }
163 164

    BN_CTX_start(ctx);
165

166 167 168
    if (((p = EC_POINT_new(group)) == NULL)
        || ((s = EC_POINT_new(group)) == NULL)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
169
        goto err;
170
    }
171 172

    if (point == NULL) {
173 174
        if (!EC_POINT_copy(p, group->generator)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
175
            goto err;
176
        }
177
    } else {
178 179
        if (!EC_POINT_copy(p, point)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
180
            goto err;
181
        }
182 183
    }

184 185
    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
N
Nicola Tuveri 已提交
186
    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
187

188
    cardinality = BN_CTX_get(ctx);
189 190
    lambda = BN_CTX_get(ctx);
    k = BN_CTX_get(ctx);
191 192 193 194 195 196 197
    if (k == NULL) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
198
        goto err;
199
    }
200 201

    /*
202
     * Group cardinalities are often on a word boundary.
203 204 205 206
     * So when we pad the scalar, some timing diff might
     * pop if it needs to be expanded due to carries.
     * So expand ahead of time.
     */
207 208
    cardinality_bits = BN_num_bits(cardinality);
    group_top = bn_get_top(cardinality);
209 210
    if ((bn_wexpand(k, group_top + 2) == NULL)
        || (bn_wexpand(lambda, group_top + 2) == NULL)) {
211
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
212
        goto err;
213
    }
214

215 216
    if (!BN_copy(k, scalar)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
217
        goto err;
218
    }
219 220 221

    BN_set_flags(k, BN_FLG_CONSTTIME);

222
    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
N
Nicola Tuveri 已提交
223
        /*-
224 225 226
         * this is an unusual input, and we don't guarantee
         * constant-timeness
         */
227 228
        if (!BN_nnmod(k, k, cardinality, ctx)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
229
            goto err;
230
        }
231 232
    }

233 234
    if (!BN_add(lambda, k, cardinality)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235
        goto err;
236
    }
237
    BN_set_flags(lambda, BN_FLG_CONSTTIME);
238 239
    if (!BN_add(k, lambda, cardinality)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
240
        goto err;
241
    }
242
    /*
243 244
     * lambda := scalar + cardinality
     * k := scalar + 2*cardinality
245
     */
246
    kbit = BN_is_bit_set(lambda, cardinality_bits);
247
    BN_consttime_swap(kbit, k, lambda, group_top + 2);
248 249 250 251 252 253 254

    group_top = bn_get_top(group->field);
    if ((bn_wexpand(s->X, group_top) == NULL)
        || (bn_wexpand(s->Y, group_top) == NULL)
        || (bn_wexpand(s->Z, group_top) == NULL)
        || (bn_wexpand(r->X, group_top) == NULL)
        || (bn_wexpand(r->Y, group_top) == NULL)
255 256 257 258 259
        || (bn_wexpand(r->Z, group_top) == NULL)
        || (bn_wexpand(p->X, group_top) == NULL)
        || (bn_wexpand(p->Y, group_top) == NULL)
        || (bn_wexpand(p->Z, group_top) == NULL)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
260
        goto err;
261
    }
262

263 264 265 266 267 268 269 270
    /*-
     * Apply coordinate blinding for EC_POINT.
     *
     * The underlying EC_METHOD can optionally implement this function:
     * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
     * success or if coordinate blinding is not implemented for this
     * group.
     */
271 272
    if (!ec_point_blind_coordinates(group, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE);
273
        goto err;
274
    }
275

276 277 278
    /* Initialize the Montgomery ladder */
    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
279
        goto err;
280
    }
281

282 283
    /* top bit is a 1, in a fixed pos */
    pbit = 1;
284 285 286 287 288 289 290 291 292 293

#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
        (a)->Z_is_one ^= (t);                      \
        (b)->Z_is_one ^= (t);                      \
} while(0)

N
Nicola Tuveri 已提交
294
    /*-
B
Billy Brumley 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
     * The ladder step, with branches, is
     *
     * k[i] == 0: S = add(R, S), R = dbl(R)
     * k[i] == 1: R = add(S, R), S = dbl(S)
     *
     * Swapping R, S conditionally on k[i] leaves you with state
     *
     * k[i] == 0: T, U = R, S
     * k[i] == 1: T, U = S, R
     *
     * Then perform the ECC ops.
     *
     * U = add(T, U)
     * T = dbl(T)
     *
     * Which leaves you with state
     *
     * k[i] == 0: U = add(R, S), T = dbl(R)
     * k[i] == 1: U = add(S, R), T = dbl(S)
     *
     * Swapping T, U conditionally on k[i] leaves you with state
     *
     * k[i] == 0: R, S = T, U
     * k[i] == 1: R, S = U, T
     *
     * Which leaves you with state
     *
     * k[i] == 0: S = add(R, S), R = dbl(R)
     * k[i] == 1: R = add(S, R), S = dbl(S)
     *
     * So we get the same logic, but instead of a branch it's a
     * conditional swap, followed by ECC ops, then another conditional swap.
     *
     * Optimization: The end of iteration i and start of i-1 looks like
     *
     * ...
     * CSWAP(k[i], R, S)
     * ECC
     * CSWAP(k[i], R, S)
     * (next iteration)
     * CSWAP(k[i-1], R, S)
     * ECC
     * CSWAP(k[i-1], R, S)
     * ...
     *
     * So instead of two contiguous swaps, you can merge the condition
     * bits and do a single swap.
     *
N
Nicola Tuveri 已提交
343 344 345 346 347
     * k[i]   k[i-1]    Outcome
     * 0      0         No Swap
     * 0      1         Swap
     * 1      0         Swap
     * 1      1         No Swap
B
Billy Brumley 已提交
348 349 350 351
     *
     * This is XOR. pbit tracks the previous bit of k.
     */

352
    for (i = cardinality_bits - 1; i >= 0; i--) {
353 354
        kbit = BN_is_bit_set(k, i) ^ pbit;
        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
355 356 357 358

        /* Perform a single step of the Montgomery ladder */
        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
359
            goto err;
360
        }
361 362 363 364 365 366 367 368 369 370
        /*
         * pbit logic merges this cswap with that of the
         * next iteration
         */
        pbit ^= kbit;
    }
    /* one final cswap to move the right value into r */
    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
#undef EC_POINT_CSWAP

371 372 373 374 375 376
    /* Finalize ladder (and recover full point coordinates) */
    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
        goto err;
    }

377 378
    ret = 1;

N
Nicola Tuveri 已提交
379
 err:
380
    EC_POINT_free(p);
381
    EC_POINT_clear_free(s);
382 383 384 385
    BN_CTX_end(ctx);

    return ret;
}
N
Nicola Tuveri 已提交
386

N
Nicola Tuveri 已提交
387
#undef EC_POINT_BN_set_flags
388

389 390 391 392
/*
 * TODO: table should be optimised for the wNAF-based implementation,
 * sometimes smaller windows will give better performance (thus the
 * boundaries should be increased)
B
comment  
Bodo Möller 已提交
393
 */
B
Bodo Möller 已提交
394
#define EC_window_bits_for_scalar_size(b) \
395 396 397 398 399 400 401
                ((size_t) \
                 ((b) >= 2000 ? 6 : \
                  (b) >=  800 ? 5 : \
                  (b) >=  300 ? 4 : \
                  (b) >=   70 ? 3 : \
                  (b) >=   20 ? 2 : \
                  1))
B
Bodo Möller 已提交
402

403 404
/*-
 * Compute
B
Bodo Möller 已提交
405 406 407 408 409
 *      \sum scalars[i]*points[i],
 * also including
 *      scalar*generator
 * in the addition if scalar != NULL
 */
410
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
                BN_CTX *ctx)
{
    const EC_POINT *generator = NULL;
    EC_POINT *tmp = NULL;
    size_t totalnum;
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
    size_t pre_points_per_block = 0;
    size_t i, j;
    int k;
    int r_is_inverted = 0;
    int r_is_at_infinity = 1;
    size_t *wsize = NULL;       /* individual window sizes */
    signed char **wNAF = NULL;  /* individual wNAFs */
    size_t *wNAF_len = NULL;
    size_t max_len = 0;
    size_t num_val;
    EC_POINT **val = NULL;      /* precomputation */
    EC_POINT **v;
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
                                 * 'pre_comp->points' */
    const EC_PRE_COMP *pre_comp = NULL;
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
                                 * treated like other scalars, i.e.
                                 * precomputation is not available */
    int ret = 0;

438
    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
N
Nicola Tuveri 已提交
439
        /*-
440 441 442
         * Handle the common cases where the scalar is secret, enforcing a
         * scalar multiplication implementation based on a Montgomery ladder,
         * with various timing attack defenses.
N
Nicola Tuveri 已提交
443
         */
444
        if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
445 446
            /*-
             * In this case we want to compute scalar * GeneratorPoint: this
447 448 449 450 451
             * codepath is reached most prominently by (ephemeral) key
             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
             * ECDH keygen/first half), where the scalar is always secret. This
             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
             * always call the ladder version.
452
             */
453
            return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
454
        }
455
        if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
456
            /*-
457 458 459 460 461
             * In this case we want to compute scalar * VariablePoint: this
             * codepath is reached most prominently by the second half of ECDH,
             * where the secret scalar is multiplied by the peer's public point.
             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
             * actually set and we always call the ladder version.
462
             */
463
            return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
464
        }
N
Nicola Tuveri 已提交
465 466
    }

467 468 469 470 471 472 473 474 475
    if (scalar != NULL) {
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL) {
            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
            goto err;
        }

        /* look if we can use precomputed multiples of generator */

476
        pre_comp = group->pre_comp.ec;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
        if (pre_comp && pre_comp->numblocks
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
                0)) {
            blocksize = pre_comp->blocksize;

            /*
             * determine maximum number of blocks that wNAF splitting may
             * yield (NB: maximum wNAF length is bit length plus one)
             */
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;

            /*
             * we cannot use more blocks than we have precomputation for
             */
            if (numblocks > pre_comp->numblocks)
                numblocks = pre_comp->numblocks;

            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);

            /* check that pre_comp looks sane */
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
        } else {
            /* can't use precomputation */
            pre_comp = NULL;
            numblocks = 1;
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
                                 * 'scalars' */
        }
    }

    totalnum = num + numblocks;

R
Rich Salz 已提交
512 513 514 515 516
    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
    /* include space for pivot */
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
517 518

    /* Ensure wNAF is initialised in case we end up going to err */
519
    if (wNAF != NULL)
520 521
        wNAF[0] = NULL;         /* preliminary pivot */

522
    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    /*
     * num_val will be the total number of temporarily precomputed points
     */
    num_val = 0;

    for (i = 0; i < num + num_scalar; i++) {
        size_t bits;

        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
        wsize[i] = EC_window_bits_for_scalar_size(bits);
        num_val += (size_t)1 << (wsize[i] - 1);
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
        wNAF[i] =
            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
                            &wNAF_len[i]);
        if (wNAF[i] == NULL)
            goto err;
        if (wNAF_len[i] > max_len)
            max_len = wNAF_len[i];
    }

    if (numblocks) {
        /* we go here iff scalar != NULL */

        if (pre_comp == NULL) {
            if (num_scalar != 1) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
            /* we have already generated a wNAF for 'scalar' */
        } else {
            signed char *tmp_wNAF = NULL;
            size_t tmp_len = 0;

            if (num_scalar != 0) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            /*
             * use the window size for which we have precomputation
             */
            wsize[num] = pre_comp->w;
            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
            if (!tmp_wNAF)
                goto err;

            if (tmp_len <= max_len) {
                /*
                 * One of the other wNAFs is at least as long as the wNAF
                 * belonging to the generator, so wNAF splitting will not buy
                 * us anything.
                 */

                numblocks = 1;
                totalnum = num + 1; /* don't use wNAF splitting */
                wNAF[num] = tmp_wNAF;
                wNAF[num + 1] = NULL;
                wNAF_len[num] = tmp_len;
                /*
                 * pre_comp->points starts with the points that we need here:
                 */
                val_sub[num] = pre_comp->points;
            } else {
                /*
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
                 * splitting and include the blocks
                 */

                signed char *pp;
                EC_POINT **tmp_points;

                if (tmp_len < numblocks * blocksize) {
                    /*
                     * possibly we can do with fewer blocks than estimated
                     */
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
                    if (numblocks > pre_comp->numblocks) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
606
                        OPENSSL_free(tmp_wNAF);
607 608 609 610 611 612 613 614 615 616 617 618 619 620
                        goto err;
                    }
                    totalnum = num + numblocks;
                }

                /* split wNAF in 'numblocks' parts */
                pp = tmp_wNAF;
                tmp_points = pre_comp->points;

                for (i = num; i < totalnum; i++) {
                    if (i < totalnum - 1) {
                        wNAF_len[i] = blocksize;
                        if (tmp_len < blocksize) {
                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
621
                            OPENSSL_free(tmp_wNAF);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
                            goto err;
                        }
                        tmp_len -= blocksize;
                    } else
                        /*
                         * last block gets whatever is left (this could be
                         * more or less than 'blocksize'!)
                         */
                        wNAF_len[i] = tmp_len;

                    wNAF[i + 1] = NULL;
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
                    if (wNAF[i] == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    memcpy(wNAF[i], pp, wNAF_len[i]);
                    if (wNAF_len[i] > max_len)
                        max_len = wNAF_len[i];

                    if (*tmp_points == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    val_sub[i] = tmp_points;
                    tmp_points += pre_points_per_block;
                    pp += blocksize;
                }
                OPENSSL_free(tmp_wNAF);
            }
        }
    }

    /*
     * All points we precompute now go into a single array 'val'.
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
     * subarray of 'pre_comp->points' if we already have precomputation.
     */
R
Rich Salz 已提交
662
    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    if (val == NULL) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }
    val[num_val] = NULL;        /* pivot element */

    /* allocate points for precomputation */
    v = val;
    for (i = 0; i < num + num_scalar; i++) {
        val_sub[i] = v;
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
            *v = EC_POINT_new(group);
            if (*v == NULL)
                goto err;
            v++;
        }
    }
    if (!(v == val + num_val)) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
        goto err;
    }

685
    if ((tmp = EC_POINT_new(group)) == NULL)
686 687
        goto err;

688 689 690 691 692 693 694
    /*-
     * prepare precomputed values:
     *    val_sub[i][0] :=     points[i]
     *    val_sub[i][1] := 3 * points[i]
     *    val_sub[i][2] := 5 * points[i]
     *    ...
     */
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    for (i = 0; i < num + num_scalar; i++) {
        if (i < num) {
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
                goto err;
        } else {
            if (!EC_POINT_copy(val_sub[i][0], generator))
                goto err;
        }

        if (wsize[i] > 1) {
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
                goto err;
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
                if (!EC_POINT_add
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
        goto err;
B
Bodo Möller 已提交
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    r_is_at_infinity = 1;

    for (k = max_len - 1; k >= 0; k--) {
        if (!r_is_at_infinity) {
            if (!EC_POINT_dbl(group, r, r, ctx))
                goto err;
        }

        for (i = 0; i < totalnum; i++) {
            if (wNAF_len[i] > (size_t)k) {
                int digit = wNAF[i][k];
                int is_neg;

                if (digit) {
                    is_neg = digit < 0;

                    if (is_neg)
                        digit = -digit;

                    if (is_neg != r_is_inverted) {
                        if (!r_is_at_infinity) {
                            if (!EC_POINT_invert(group, r, ctx))
                                goto err;
                        }
                        r_is_inverted = !r_is_inverted;
                    }

                    /* digit > 0 */

                    if (r_is_at_infinity) {
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
                            goto err;
                        r_is_at_infinity = 0;
                    } else {
                        if (!EC_POINT_add
                            (group, r, r, val_sub[i][digit >> 1], ctx))
                            goto err;
                    }
                }
            }
        }
    }

    if (r_is_at_infinity) {
        if (!EC_POINT_set_to_infinity(group, r))
            goto err;
    } else {
        if (r_is_inverted)
            if (!EC_POINT_invert(group, r, ctx))
                goto err;
    }

    ret = 1;
B
Bodo Möller 已提交
771 772

 err:
R
Rich Salz 已提交
773
    EC_POINT_free(tmp);
R
Rich Salz 已提交
774 775
    OPENSSL_free(wsize);
    OPENSSL_free(wNAF_len);
776 777 778 779 780 781 782 783 784 785 786 787 788 789
    if (wNAF != NULL) {
        signed char **w;

        for (w = wNAF; *w != NULL; w++)
            OPENSSL_free(*w);

        OPENSSL_free(wNAF);
    }
    if (val != NULL) {
        for (v = val; *v != NULL; v++)
            EC_POINT_clear_free(*v);

        OPENSSL_free(val);
    }
R
Rich Salz 已提交
790
    OPENSSL_free(val_sub);
791 792
    return ret;
}
793

794 795
/*-
 * ec_wNAF_precompute_mult()
796 797
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
798
 *
799 800 801 802 803 804 805 806 807 808 809 810 811 812
 * 'pre_comp->points' is an array of multiples of the generator
 * of the following form:
 * points[0] =     generator;
 * points[1] = 3 * generator;
 * ...
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 * points[2^(w-1)]   =     2^blocksize * generator;
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 * ...
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 * ...
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 * points[2^(w-1)*numblocks]       = NULL
813 814
 */
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
815 816 817 818
{
    const EC_POINT *generator;
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
    BN_CTX *new_ctx = NULL;
819
    const BIGNUM *order;
820 821 822 823 824 825
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
    EC_POINT **points = NULL;
    EC_PRE_COMP *pre_comp;
    int ret = 0;

    /* if there is an old EC_PRE_COMP object, throw it away */
826
    EC_pre_comp_free(group);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
        return 0;

    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
        goto err;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            goto err;
    }

    BN_CTX_start(ctx);

844 845
    order = EC_GROUP_get0_order(group);
    if (order == NULL)
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
        goto err;
    if (BN_is_zero(order)) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
        goto err;
    }

    bits = BN_num_bits(order);
    /*
     * The following parameters mean we precompute (approximately) one point
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
     * bit lengths, other parameter combinations might provide better
     * efficiency.
     */
    blocksize = 8;
    w = 4;
    if (EC_window_bits_for_scalar_size(bits) > w) {
        /* let's not make the window too small ... */
        w = EC_window_bits_for_scalar_size(bits);
    }

    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
                                                     * to use for wNAF
                                                     * splitting */

    pre_points_per_block = (size_t)1 << (w - 1);
    num = pre_points_per_block * numblocks; /* number of points to compute
                                             * and store */

R
Rich Salz 已提交
874
    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
875
    if (points == NULL) {
876 877 878 879 880 881 882 883 884 885 886 887 888
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    var = points;
    var[num] = NULL;            /* pivot */
    for (i = 0; i < num; i++) {
        if ((var[i] = EC_POINT_new(group)) == NULL) {
            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }

889 890
    if ((tmp_point = EC_POINT_new(group)) == NULL
        || (base = EC_POINT_new(group)) == NULL) {
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_POINT_copy(base, generator))
        goto err;

    /* do the precomputation */
    for (i = 0; i < numblocks; i++) {
        size_t j;

        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
            goto err;

        if (!EC_POINT_copy(*var++, base))
            goto err;

        for (j = 1; j < pre_points_per_block; j++, var++) {
            /*
             * calculate odd multiples of the current base point
             */
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
                goto err;
        }

        if (i < numblocks - 1) {
            /*
             * get the next base (multiply current one by 2^blocksize)
             */
            size_t k;

            if (blocksize <= 2) {
                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
                goto err;
            for (k = 2; k < blocksize; k++) {
                if (!EC_POINT_dbl(group, base, base, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num, points, ctx))
        goto err;

    pre_comp->group = group;
    pre_comp->blocksize = blocksize;
    pre_comp->numblocks = numblocks;
    pre_comp->w = w;
    pre_comp->points = points;
    points = NULL;
    pre_comp->num = num;
946
    SETPRECOMP(group, ec, pre_comp);
947 948
    pre_comp = NULL;
    ret = 1;
949

950
 err:
951
    BN_CTX_end(ctx);
R
Rich Salz 已提交
952
    BN_CTX_free(new_ctx);
953
    EC_ec_pre_comp_free(pre_comp);
954 955 956 957 958 959 960
    if (points) {
        EC_POINT **p;

        for (p = points; *p != NULL; p++)
            EC_POINT_free(*p);
        OPENSSL_free(points);
    }
R
Rich Salz 已提交
961 962
    EC_POINT_free(tmp_point);
    EC_POINT_free(base);
963 964
    return ret;
}
965

966
int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
967
{
968
    return HAVEPRECOMP(group, ec);
969
}