- 17 8月, 2020 1 次提交
-
-
由 c00346986 提交于
Description:kernelspace musl code Team:OTHERS Feature or Bugfix:Feature Binary Source:NA PrivateCode(Yes/No):No Change-Id: I99874a7c570b7d22b4a3d34840260eb48ea3ffa1 Reviewed-on: http://mgit-tm.rnd.huawei.com/10276995Reviewed-by: Nshenwei 00579521 <denny.shenwei@huawei.com> Tested-by: Npublic jenkins <public_jenkins@notesmail.huawei.com>
-
- 12 3月, 2015 1 次提交
-
-
由 Szabolcs Nagy 提交于
This is in preparation for the aarch64 port only to have the long double math symbols available on ld128 platforms. The implementations should be fixed up later once we have proper tests for these functions. Added bigendian handling for ld128 bit manipulations too.
-
- 05 9月, 2013 2 次提交
-
-
由 Szabolcs Nagy 提交于
acosh(x) is invalid for x<1, acoshf tried to be clever using signed comparisions to handle all x<2 the same way, but the formula was wrong on large negative values.
-
由 Szabolcs Nagy 提交于
* use new ldshape union consistently * add ld128 support to frexpl * simplify sqrtl comment (ld64 is not just arm)
-
- 12 12月, 2012 1 次提交
-
-
由 Szabolcs Nagy 提交于
modifications: * avoid unsigned->signed integer conversion * do not handle special cases when they work correctly anyway * more strict threshold values (0x1p26 instead of 0x1p28 etc) * smaller code, cleaner branching logic * same precision as the old code: acosh(x) has up to 2ulp error in [1,1.125] asinh(x) has up to 1.6ulp error in [0.125,0.5], [-0.5,-0.125] atanh(x) has up to 1.7ulp error in [0.125,0.5], [-0.5,-0.125]
-
- 20 3月, 2012 1 次提交
-
-
由 nsz 提交于
zero, one, two, half are replaced by const literals The policy was to use the f suffix for float consts (1.0f), but don't use suffix for long double consts (these consts can be exactly represented as double).
-
- 13 3月, 2012 1 次提交
-
-
由 Rich Felker 提交于
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best (from correctness and license standpoint) implementations from freebsd and openbsd and cleaning them up! musl should now fully support c99 float and long double math functions, and has near-complete complex math support. tgmath should also work (fully on gcc-compatible compilers, and mostly on any c99 compiler). based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from nsz's libm git repo, with some additions (dummy versions of a few missing long double complex functions, etc.) by me. various cleanups still need to be made, including re-adding (if they're correct) some asm functions that were dropped.
-