README.md 26.3 KB
Newer Older
M
Max Bruckner 已提交
1 2 3 4 5 6 7 8
# cJSON

Ultralightweight JSON parser in ANSI C.

## Table of contents
* [License](#license)
* [Usage](#usage)
  * [Welcome to cJSON](#welcome-to-cjson)
M
Max Bruckner 已提交
9
  * [Building](#building)
M
Max Bruckner 已提交
10
  * [Including cJSON](#including-cjson)
11
  * [Data Structure](#data-structure)
12
  * [Working with the data structure](#working-with-the-data-structure)
M
Max Bruckner 已提交
13
  * [Parsing JSON](#parsing-json)
M
Max Bruckner 已提交
14
  * [Printing JSON](#printing-json)
M
Max Bruckner 已提交
15 16
  * [Some JSON](#some-json)
  * [Here's the structure](#heres-the-structure)
M
Max Bruckner 已提交
17
  * [Caveats](#caveats)
M
Max Bruckner 已提交
18 19 20 21
  * [Enjoy cJSON!](#enjoy-cjson)

## License

M
Max Bruckner 已提交
22 23 24
MIT License

>  Copyright (c) 2009-2017 Dave Gamble and cJSON contributors
M
Max Bruckner 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
>
>  Permission is hereby granted, free of charge, to any person obtaining a copy
>  of this software and associated documentation files (the "Software"), to deal
>  in the Software without restriction, including without limitation the rights
>  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
>  copies of the Software, and to permit persons to whom the Software is
>  furnished to do so, subject to the following conditions:
>
>  The above copyright notice and this permission notice shall be included in
>  all copies or substantial portions of the Software.
>
>  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
>  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
>  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
>  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
>  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
>  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
>  THE SOFTWARE.

## Usage

### Welcome to cJSON.
K
Kevin Branigan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

cJSON aims to be the dumbest possible parser that you can get your job done with.
It's a single file of C, and a single header file.

JSON is described best here: http://www.json.org/
It's like XML, but fat-free. You use it to move data around, store things, or just
generally represent your program's state.

As a library, cJSON exists to take away as much legwork as it can, but not get in your way.
As a point of pragmatism (i.e. ignoring the truth), I'm going to say that you can use it
in one of two modes: Auto and Manual. Let's have a quick run-through.

I lifted some JSON from this page: http://www.json.org/fatfree.html
That page inspired me to write cJSON, which is a parser that tries to share the same
philosophy as JSON itself. Simple, dumb, out of the way.

M
Max Bruckner 已提交
63 64 65 66 67 68 69 70 71 72
### Building

There are several ways to incorporate cJSON into your project.

#### copying the source
Because the entire library is only one C file and one header file, you can just copy `cJSON.h` and `cJSON.c` to your projects source and start using it.

cJSON is written in ANSI C (C89) in order to support as many platforms and compilers as possible.

#### CMake
73
With CMake, cJSON supports a full blown build system. This way you get the most features. CMake with an equal or higher version than 2.8.5 is supported. With CMake it is recommended to do an out of tree build, meaning the compiled files are put in a directory separate from the source files. So in order to build cJSON with CMake on a Unix platform, make a `build` directory and run CMake inside it.
M
Max Bruckner 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

```
mkdir build
cd build
cmake ..
```

This will create a Makefile and a bunch of other files. You can then compile it:

```
make
```

And install it with `make install` if you want. By default it installs the headers `/usr/local/include/cjson` and the libraries to `/usr/local/lib`. It also installs files for pkg-config to make it easier to detect and use an existing installation of CMake. And it installs CMake config files, that can be used by other CMake based projects to discover the library.

You can change the build process with a list of different options that you can pass to CMake. Turn them on with `On` and off with `Off`:
R
Romain Porte 已提交
90
* `-DENABLE_CJSON_TEST=On`: Enable building the tests. (on by default)
M
Max Bruckner 已提交
91 92
* `-DENABLE_CJSON_UTILS=On`: Enable building cJSON_Utils. (off by default)
* `-DENABLE_TARGET_EXPORT=On`: Enable the export of CMake targets. Turn off if it makes problems. (on by default)
93
* `-DENABLE_CUSTOM_COMPILER_FLAGS=On`: Enable custom compiler flags (currently for Clang, GCC and MSVC). Turn off if it makes problems. (on by default)
94 95
* `-DENABLE_VALGRIND=On`: Run tests with [valgrind](http://valgrind.org). (off by default)
* `-DENABLE_SANITIZERS=On`: Compile cJSON with [AddressSanitizer](https://github.com/google/sanitizers/wiki/AddressSanitizer) and [UndefinedBehaviorSanitizer](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html) enabled (if possible). (off by default)
96
* `-DENABLE_SAFE_STACK`: Enable the [SafeStack](https://clang.llvm.org/docs/SafeStack.html) instrumentation pass. Currently only works with the Clang compiler. (off by default)
M
Max Bruckner 已提交
97
* `-DBUILD_SHARED_LIBS=On`: Build the shared libraries. (on by default)
98
* `-DBUILD_SHARED_AND_STATIC_LIBS=On`: Build both shared and static libraries. (off by default)
M
Max Bruckner 已提交
99
* `-DCMAKE_INSTALL_PREFIX=/usr`: Set a prefix for the installation.
100
* `-DENABLE_LOCALES=On`: Enable the usage of localeconv method. ( on by default )
M
Max Bruckner 已提交
101
* `-DCJSON_OVERRIDE_BUILD_SHARED_LIBS=On`: Enable overriding the value of `BUILD_SHARED_LIBS` with `-DCJSON_BUILD_SHARED_LIBS`.
M
Max Bruckner 已提交
102 103 104 105 106

If you are packaging cJSON for a distribution of Linux, you would probably take these steps for example:
```
mkdir build
cd build
R
Romain Porte 已提交
107
cmake .. -DENABLE_CJSON_UTILS=On -DENABLE_CJSON_TEST=Off -DCMAKE_INSTALL_PREFIX=/usr
M
Max Bruckner 已提交
108 109 110 111 112
make
make DESTDIR=$pkgdir install
```

#### Makefile
113
If you don't have CMake available, but still have GNU make. You can use the makefile to build cJSON:
M
Max Bruckner 已提交
114 115 116 117 118 119 120 121 122

Run this command in the directory with the source code and it will automatically compile static and shared libraries and a little test program.

```
make all
```

If you want, you can install the compiled library to your system using `make install`. By default it will install the headers in `/usr/local/include/cjson` and the libraries in `/usr/local/lib`. But you can change this behavior by setting the `PREFIX` and `DESTDIR` variables: `make PREFIX=/usr DESTDIR=temp install`.

123
### Including cJSON
M
Max Bruckner 已提交
124
If you installed it via CMake or the Makefile, you can include cJSON like this:
125 126 127 128 129

```c
#include <cjson/cJSON.h>
```

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
### Data Structure

cJSON represents JSON data using the `cJSON` struct data type:

```c
/* The cJSON structure: */
typedef struct cJSON
{
    struct cJSON *next;
    struct cJSON *prev;
    struct cJSON *child;
    int type;
    char *valuestring;
    /* writing to valueint is DEPRECATED, use cJSON_SetNumberValue instead */
    int valueint;
    double valuedouble;
    char *string;
} cJSON;
```

An item of this type represents a JSON value. The type is stored in `type` as a bit-flag (**this means that you cannot find out the type by just comparing the value of `type`**).

To check the type of an item, use the corresponding `cJSON_Is...` function. It does a `NULL` check followed by a type check and returns a boolean value if the item is of this type.

The type can be one of the following:
* `cJSON_Invalid` (check with `cJSON_IsInvalid`): Represents an invalid item that doesn't contain any value. You automatically have this type if you set the item to all zero bytes.
* `cJSON_False` (check with `cJSON_IsFalse`): Represents a `false` boolean value. You can also check for boolean values in general with `cJSON_IsBool`.
* `cJSON_True` (check with `cJSON_IsTrue`): Represents a `true` boolean value. You can also check for boolean values in general with `cJSON_IsBool`.
* `cJSON_NULL` (check with `cJSON_IsNull`): Represents a `null` value.
* `cJSON_Number` (check with `cJSON_IsNumber`): Represents a number value. The value is stored as a double in `valuedouble` and also in `valueint`. If the number is outside of the range of an integer, `INT_MAX` or `INT_MIN` are used for `valueint`.
* `cJSON_String` (check with `cJSON_IsString`): Represents a string value. It is stored in the form of a zero terminated string in `valuestring`.
* `cJSON_Array` (check with `cJSON_IsArray`): Represent an array value. This is implemented by pointing `child` to a linked list of `cJSON` items that represent the values in the array. The elements are linked together using `next` and `prev`, where the first element has `prev == NULL` and the last element `next == NULL`.
* `cJSON_Object` (check with `cJSON_IsObject`): Represents an object value. Objects are stored same way as an array, the only difference is that the items in the object store their keys in `string`.
* `cJSON_Raw` (check with `cJSON_IsRaw`): Represents any kind of JSON that is stored as a zero terminated array of characters in `valuestring`. This can be used, for example, to avoid printing the same static JSON over and over again to save performance. cJSON will never create this type when parsing. Also note that cJSON doesn't check if it is valid JSON.

Additionally there are the following two flags:
* `cJSON_IsReference`: Specifies that the item that `child` points to and/or `valuestring` is not owned by this item, it is only a reference. So `cJSON_Delete` and other functions will only deallocate this item, not it's children/valuestring.
* `cJSON_StringIsConst`: This means that `string` points to a constant string. This means that `cJSON_Delete` and other functions will not try to deallocate `string`.

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
### Working with the data structure

For every value type there is a `cJSON_Create...` function that can be used to create an item of that type.
All of these will allocate a `cJSON` struct that can later be deleted with `cJSON_Delete`.
Note that you have to delete them at some point, otherwise you will get a memory leak.
**Important**: If you have added an item to an array or an object already, you **mustn't** delete it with `cJSON_Delete`. Adding it to an array or object transfers its ownership so that when that array or object is deleted, it gets deleted as well.

#### Basic types
* **null** is created with `cJSON_CreateNull`
* **booleans** are created with `cJSON_CreateTrue`, `cJSON_CreateFalse` or `cJSON_CreateBool`
* **numbers** are created with `cJSON_CreateNumber`. This will set both `valuedouble` and `valueint`. If the number is outside of the range of an integer, `INT_MAX` or `INT_MIN` are used for `valueint`
* **strings** are created with `cJSON_CreateString` (copies the string) or with `cJSON_CreateStringReference` (directly points to the string. This means that `valuestring` won't be deleted by `cJSON_Delete` and you are responsible for it's lifetime, useful for constants)

#### Arrays

You can create an empty array with `cJSON_CreateArray`. `cJSON_CreateArrayReference` can be used to create an array that doesn't "own" its content, so its content doesn't get deleted by `cJSON_Delete`.

To add items to an array, use `cJSON_AddItemToArray` to append items to the end.
Using `cJSON_AddItemReferenceToArray` an element can be added as a reference to another item, array or string. This means that `cJSON_Delete` will not delete that items `child` or `valuestring` properties, so no double frees are occuring if they are already used elsewhere.
To insert items in the middle, use `cJSON_InsertItemInArray`. It will insert an item at the given 0 based index and shift all the existing items to the right.

If you want to take an item out of an array at a given index and continue using it, use `cJSON_DetachItemFromArray`, it will return the detached item, so be sure to assign it to a pointer, otherwise you will have a memory leak.

Deleting items is done with `cJSON_DeleteItemFromArray`. It works like `cJSON_DetachItemFromArray`, but deletes the detached item via `cJSON_Delete`.

You can also replace an item in an array in place. Either with `cJSON_ReplaceItemInArray` using an index or with `cJSON_ReplaceItemViaPointer` given a pointer to an element. `cJSON_ReplaceItemViaPointer` will return `0` if it fails. What this does internally is to detach the old item, delete it and insert the new item in its place.

To get the size of an array, use `cJSON_GetArraySize`. Use `cJSON_GetArrayItem` to get an element at a given index.

Because an array is stored as a linked list, iterating it via index is inefficient (`O(n²)`), so you can iterate over an array using the `cJSON_ArrayForEach` macro in `O(n)` time complexity.

#### Objects

You can create an empty object with `cJSON_CreateObject`. `cJSON_CreateObjectReference` can be used to create an object that doesn't "own" its content, so its content doesn't get deleted by `cJSON_Delete`.

To add items to an object, use `cJSON_AddItemToObject`. Use `cJSON_AddItemToObjectCS` to add an item to an object with a name that is a constant or reference (key of the item, `string` in the `cJSON` struct), so that it doesn't get freed by `cJSON_Delete`.
Using `cJSON_AddItemReferenceToArray` an element can be added as a reference to another object, array or string. This means that `cJSON_Delete` will not delete that items `child` or `valuestring` properties, so no double frees are occuring if they are already used elsewhere.

If you want to take an item out of an object, use `cJSON_DetachItemFromObjectCaseSensitive`, it will return the detached item, so be sure to assign it to a pointer, otherwise you will have a memory leak.

Deleting items is done with `cJSON_DeleteItemFromObjectCaseSensitive`. It works like `cJSON_DetachItemFromObjectCaseSensitive` followed by `cJSON_Delete`.

You can also replace an item in an object in place. Either with `cJSON_ReplaceItemInObjectCaseSensitive` using a key or with `cJSON_ReplaceItemViaPointer` given a pointer to an element. `cJSON_ReplaceItemViaPointer` will return `0` if it fails. What this does internally is to detach the old item, delete it and insert the new item in its place.

To get the size of an object, you can use `cJSON_GetArraySize`, this works because internally objects are stored as arrays.

If you want to access an item in an object, use `cJSON_GetObjectItemCaseSensitive`.

To iterate over an object, you can use the `cJSON_ArrayForEach` macro the same way as for arrays.

cJSON also provides convenient helper functions for quickly creating a new item and adding it to an object, like `cJSON_AddNullToObject`. They return a pointer to the new item or `NULL` if they failed.

M
Max Bruckner 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
### Parsing JSON

Given some JSON in a zero terminated string, you can parse it with `cJSON_Parse`.

```c
cJSON *json = cJSON_Parse(string);
```

It will parse the JSON and allocate a tree of `cJSON` items that represents it. Once it returns, you are fully responsible for deallocating it after use with `cJSON_Delete`.

The allocator used by `cJSON_Parse` is `malloc` and `free` by default but can be changed (globally) with `cJSON_InitHooks`.

If an error occurs a pointer to the position of the error in the input string can be accessed using `cJSON_GetErrorPtr`. Note though that this can produce race conditions in multithreading scenarios, in that case it is better to use `cJSON_ParseWithOpts` with `return_parse_end`.
By default, characters in the input string that follow the parsed JSON will not be considered as an error.

If you want more options, use `cJSON_ParseWithOpts(const char *value, const char **return_parse_end, cJSON_bool require_null_terminated)`.
`return_parse_end` returns a pointer to the end of the JSON in the input string or the position that an error occurs at (thereby replacing `cJSON_GetErrorPtr` in a thread safe way). `require_null_terminated`, if set to `1` will make it an error if the input string contains data after the JSON.

M
Max Bruckner 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
### Printing JSON

Given a tree of `cJSON` items, you can print them as a string using `cJSON_Print`.

```c
char *string = cJSON_Print(json);
```

It will allocate a string and print a JSON representation of the tree into it. Once it returns, you are fully responsible for deallocating it after use with your allocator. (usually `free`, depends on what has been set with `cJSON_InitHooks`).

`cJSON_Print` will print with whitespace for formatting. If you want to print without formatting, use `cJSON_PrintUnformatted`.

If you have a rough idea of how big your resulting string will be, you can use `cJSON_PrintBuffered(const cJSON *item, int prebuffer, cJSON_bool fmt)`. `fmt` is a boolean to turn formatting with whitespace on and off. `prebuffer` specifies the first buffer size to use for printing. `cJSON_Print` currently uses 256 bytes for it's first buffer size. Once printing runs out of space, a new buffer is allocated and the old gets copied over before printing is continued.

These dynamic buffer allocations can be completely avoided by using `cJSON_PrintPreallocated(cJSON *item, char *buffer, const int length, const cJSON_bool format)`. It takes a buffer to a pointer to print to and it's length. If the length is reached, printing will fail and it returns `0`. In case of success, `1` is returned. Note that you should provide 5 bytes more than is actually needed, because cJSON is not 100% accurate in estimating if the provided memory is enough.

M
Max Bruckner 已提交
255 256 257 258 259 260 261 262 263 264 265
### Some JSON:

```json
{
    "name": "Jack (\"Bee\") Nimble",
    "format": {
        "type":       "rect",
        "width":      1920,
        "height":     1080,
        "interlace":  false,
        "frame rate": 24
K
Kevin Branigan 已提交
266
    }
M
Max Bruckner 已提交
267 268
}
```
K
Kevin Branigan 已提交
269 270

Assume that you got this from a file, a webserver, or magic JSON elves, whatever,
M
Max Bruckner 已提交
271
you have a `char *` to it. Everything is a `cJSON` struct.
K
Kevin Branigan 已提交
272
Get it parsed:
273

M
Max Bruckner 已提交
274 275 276
```c
cJSON * root = cJSON_Parse(my_json_string);
```
K
Kevin Branigan 已提交
277 278 279 280

This is an object. We're in C. We don't have objects. But we do have structs.
What's the framerate?

M
Max Bruckner 已提交
281
```c
282 283
cJSON *format = cJSON_GetObjectItemCaseSensitive(root, "format");
cJSON *framerate_item = cJSON_GetObjectItemCaseSensitive(format, "frame rate");
284 285 286 287 288
double framerate = 0;
if (cJSON_IsNumber(framerate_item))
{
  framerate = framerate_item->valuedouble;
}
M
Max Bruckner 已提交
289
```
K
Kevin Branigan 已提交
290 291

Want to change the framerate?
292

M
Max Bruckner 已提交
293
```c
294
cJSON *framerate_item = cJSON_GetObjectItemCaseSensitive(format, "frame rate");
295
cJSON_SetNumberValue(framerate_item, 25);
M
Max Bruckner 已提交
296
```
297

K
Kevin Branigan 已提交
298
Back to disk?
299

M
Max Bruckner 已提交
300
```c
M
Max Bruckner 已提交
301
char *rendered = cJSON_Print(root);
M
Max Bruckner 已提交
302
```
K
Kevin Branigan 已提交
303 304

Finished? Delete the root (this takes care of everything else).
305

M
Max Bruckner 已提交
306 307 308
```c
cJSON_Delete(root);
```
K
Kevin Branigan 已提交
309 310 311

That's AUTO mode. If you're going to use Auto mode, you really ought to check pointers
before you dereference them. If you want to see how you'd build this struct in code?
312

M
Max Bruckner 已提交
313
```c
M
Max Bruckner 已提交
314 315
cJSON *root;
cJSON *fmt;
M
Max Bruckner 已提交
316 317 318 319 320 321 322 323 324
root = cJSON_CreateObject();
cJSON_AddItemToObject(root, "name", cJSON_CreateString("Jack (\"Bee\") Nimble"));
cJSON_AddItemToObject(root, "format", fmt = cJSON_CreateObject());
cJSON_AddStringToObject(fmt, "type", "rect");
cJSON_AddNumberToObject(fmt, "width", 1920);
cJSON_AddNumberToObject(fmt, "height", 1080);
cJSON_AddFalseToObject (fmt, "interlace");
cJSON_AddNumberToObject(fmt, "frame rate", 24);
```
K
Kevin Branigan 已提交
325 326

Hopefully we can agree that's not a lot of code? There's no overhead, no unnecessary setup.
M
Max Bruckner 已提交
327
Look at `test.c` for a bunch of nice examples, mostly all ripped off the [json.org](http://json.org) site, and
K
Kevin Branigan 已提交
328 329 330
a few from elsewhere.

What about manual mode? First up you need some detail.
M
Max Bruckner 已提交
331
Let's cover how the `cJSON` objects represent the JSON data.
K
Kevin Branigan 已提交
332
cJSON doesn't distinguish arrays from objects in handling; just type.
M
Max Bruckner 已提交
333
Each `cJSON` has, potentially, a child, siblings, value, a name.
K
Kevin Branigan 已提交
334

M
Max Bruckner 已提交
335 336 337 338 339 340 341 342
* The `root` object has: *Object* Type and a Child
* The Child has name "name", with value "Jack ("Bee") Nimble", and a sibling:
* Sibling has type *Object*, name "format", and a child.
* That child has type *String*, name "type", value "rect", and a sibling:
* Sibling has type *Number*, name "width", value 1920, and a sibling:
* Sibling has type *Number*, name "height", value 1080, and a sibling:
* Sibling has type *False*, name "interlace", and a sibling:
* Sibling has type *Number*, name "frame rate", value 24
K
Kevin Branigan 已提交
343

M
Max Bruckner 已提交
344
### Here's the structure:
345

M
Max Bruckner 已提交
346 347
```c
typedef struct cJSON {
M
Max Bruckner 已提交
348 349
    struct cJSON *next,*prev;
    struct cJSON *child;
K
Kevin Branigan 已提交
350

M
Max Bruckner 已提交
351
    int type;
K
Kevin Branigan 已提交
352

M
Max Bruckner 已提交
353
    char *valuestring;
M
Max Bruckner 已提交
354
    int valueint; /* writing to valueint is DEPRECATED, please use cJSON_SetNumberValue instead */
M
Max Bruckner 已提交
355
    double valuedouble;
K
Kevin Branigan 已提交
356

M
Max Bruckner 已提交
357
    char *string;
M
Max Bruckner 已提交
358 359
} cJSON;
```
K
Kevin Branigan 已提交
360 361 362

By default all values are 0 unless set by virtue of being meaningful.

M
Max Bruckner 已提交
363 364 365 366 367 368
`next`/`prev` is a doubly linked list of siblings. `next` takes you to your sibling,
`prev` takes you back from your sibling to you.
Only objects and arrays have a `child`, and it's the head of the doubly linked list.
A `child` entry will have `prev == 0`, but next potentially points on. The last sibling has `next == 0`.
The type expresses *Null*/*True*/*False*/*Number*/*String*/*Array*/*Object*, all of which are `#defined` in
`cJSON.h`.
K
Kevin Branigan 已提交
369

370
A *Number* has `valueint` and `valuedouble`. `valueint` is a relict of the past, so always use `valuedouble`.
K
Kevin Branigan 已提交
371

M
Max Bruckner 已提交
372 373 374
Any entry which is in the linked list which is the child of an object will have a `string`
which is the "name" of the entry. When I said "name" in the above example, that's `string`.
`string` is the JSON name for the 'variable name' if you will.
K
Kevin Branigan 已提交
375 376

Now you can trivially walk the lists, recursively, and parse as you please.
M
Max Bruckner 已提交
377
You can invoke `cJSON_Parse` to get cJSON to parse for you, and then you can take
K
Kevin Branigan 已提交
378 379 380 381
the root object, and traverse the structure (which is, formally, an N-tree),
and tokenise as you please. If you wanted to build a callback style parser, this is how
you'd do it (just an example, since these things are very specific):

M
Max Bruckner 已提交
382
```c
M
Max Bruckner 已提交
383
void parse_and_callback(cJSON *item, const char *prefix)
M
Max Bruckner 已提交
384
{
M
Max Bruckner 已提交
385 386
    while (item)
    {
387 388
        char *newprefix = malloc(strlen(prefix) + strlen(item->string) + 2);
        sprintf(newprefix, "%s/%s", prefix, item->string);
M
Max Bruckner 已提交
389 390 391 392 393 394 395 396
        int dorecurse = callback(newprefix, item->type, item);
        if (item->child && dorecurse)
        {
            parse_and_callback(item->child, newprefix);
        }
        item = item->next;
        free(newprefix);
    }
M
Max Bruckner 已提交
397 398
}
```
K
Kevin Branigan 已提交
399

M
Max Bruckner 已提交
400 401
The `prefix` process will build you a separated list, to simplify your callback handling.
The `dorecurse` flag would let the callback decide to handle sub-arrays on it's own, or
K
Kevin Branigan 已提交
402 403
let you invoke it per-item. For the item above, your callback might look like this:

M
Max Bruckner 已提交
404
```c
M
Max Bruckner 已提交
405 406 407 408 409 410
int callback(const char *name, int type, cJSON *item)
{
    if (!strcmp(name, "name"))
    {
        /* populate name */
    }
411
    else if (!strcmp(name, "format/type"))
M
Max Bruckner 已提交
412 413
    {
        /* handle "rect" */ }
414
    else if (!strcmp(name, "format/width"))
M
Max Bruckner 已提交
415 416 417
    {
        /* 800 */
    }
418
    else if (!strcmp(name, "format/height"))
M
Max Bruckner 已提交
419 420 421
    {
        /* 600 */
    }
422
    else if (!strcmp(name, "format/interlace"))
M
Max Bruckner 已提交
423 424 425
    {
        /* false */
    }
426
    else if (!strcmp(name, "format/frame rate"))
427
    {
M
Max Bruckner 已提交
428
        /* 24 */
429
    }
M
Max Bruckner 已提交
430 431 432

    return 1;
}
M
Max Bruckner 已提交
433
```
K
Kevin Branigan 已提交
434 435 436 437

Alternatively, you might like to parse iteratively.
You'd use:

M
Max Bruckner 已提交
438 439 440
```c
void parse_object(cJSON *item)
{
M
Max Bruckner 已提交
441 442 443 444 445 446
    int i;
    for (i = 0; i < cJSON_GetArraySize(item); i++)
    {
        cJSON *subitem = cJSON_GetArrayItem(item, i);
        // handle subitem
    }
M
Max Bruckner 已提交
447 448
}
```
K
Kevin Branigan 已提交
449 450 451

Or, for PROPER manual mode:

M
Max Bruckner 已提交
452
```c
M
Max Bruckner 已提交
453
void parse_object(cJSON *item)
M
Max Bruckner 已提交
454
{
M
Max Bruckner 已提交
455 456 457 458 459 460 461 462 463 464 465
    cJSON *subitem = item->child;
    while (subitem)
    {
        // handle subitem
        if (subitem->child)
        {
            parse_object(subitem->child);
        }

        subitem = subitem->next;
    }
M
Max Bruckner 已提交
466 467
}
```
K
Kevin Branigan 已提交
468 469 470 471 472 473 474 475 476 477 478 479

Of course, this should look familiar, since this is just a stripped-down version
of the callback-parser.

This should cover most uses you'll find for parsing. The rest should be possible
to infer.. and if in doubt, read the source! There's not a lot of it! ;)

In terms of constructing JSON data, the example code above is the right way to do it.
You can, of course, hand your sub-objects to other functions to populate.
Also, if you find a use for it, you can manually build the objects.
For instance, suppose you wanted to build an array of objects?

M
Max Bruckner 已提交
480
```c
M
Max Bruckner 已提交
481
cJSON *objects[24];
M
Max Bruckner 已提交
482

M
Max Bruckner 已提交
483
cJSON *Create_array_of_anything(cJSON **items, int num)
M
Max Bruckner 已提交
484
{
M
Max Bruckner 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    int i;
    cJSON *prev;
    cJSON *root = cJSON_CreateArray();
    for (i = 0; i < 24; i++)
    {
        if (!i)
        {
            root->child = objects[i];
        }
        else
        {
            prev->next = objects[i];
            objects[i]->prev = prev;
        }

        prev = objects[i];
    }

    return root;
M
Max Bruckner 已提交
504 505 506 507
}
```

and simply: `Create_array_of_anything(objects, 24);`
K
Kevin Branigan 已提交
508 509 510 511 512

cJSON doesn't make any assumptions about what order you create things in.
You can attach the objects, as above, and later add children to each
of those objects.

M
Max Bruckner 已提交
513
As soon as you call `cJSON_Print`, it renders the structure to text.
K
Kevin Branigan 已提交
514

M
Max Bruckner 已提交
515 516 517
The `test.c` code shows how to handle a bunch of typical cases. If you uncomment
the code, it'll load, parse and print a bunch of test files, also from [json.org](http://json.org),
which are more complex than I'd care to try and stash into a `const char array[]`.
K
Kevin Branigan 已提交
518

M
Max Bruckner 已提交
519 520
### Caveats

521 522 523 524
#### Zero Character

cJSON doesn't support strings that contain the zero character `'\0'` or `\u0000`. This is impossible with the current API because strings are zero terminated.

525 526
#### Character Encoding

M
Max Bruckner 已提交
527
cJSON only supports UTF-8 encoded input. In most cases it doesn't reject invalid UTF-8 as input though, it just propagates it through as is. As long as the input doesn't contain invalid UTF-8, the output will always be valid UTF-8.
528

M
Max Bruckner 已提交
529 530 531 532
#### C Standard

cJSON is written in ANSI C (or C89, C90). If your compiler or C library doesn't follow this standard, correct behavior is not guaranteed.

M
Max Bruckner 已提交
533
NOTE: ANSI C is not C++ therefore it shouldn't be compiled with a C++ compiler. You can compile it with a C compiler and link it with your C++ code however. Although compiling with a C++ compiler might work, correct behavior is not guaranteed.
M
Max Bruckner 已提交
534 535 536

#### Floating Point Numbers

M
Max Bruckner 已提交
537
cJSON does not officially support any `double` implementations other than IEEE754 double precision floating point numbers. It might still work with other implementations but bugs with these will be considered invalid.
M
Max Bruckner 已提交
538 539 540

The maximum length of a floating point literal that cJSON supports is currently 63 characters.

541 542 543 544
#### Deep Nesting Of Arrays And Objects

cJSON doesn't support arrays and objects that are nested too deeply because this would result in a stack overflow. To prevent this cJSON limits the depth to `CJSON_NESTING_LIMIT` which is 1000 by default but can be changed at compile time.

M
Max Bruckner 已提交
545 546 547 548 549
#### Thread Safety

In general cJSON is **not thread safe**.

However it is thread safe under the following conditions:
M
Max Bruckner 已提交
550 551 552
* `cJSON_GetErrorPtr` is never used (the `return_parse_end` parameter of `cJSON_ParseWithOpts` can be used instead)
* `cJSON_InitHooks` is only ever called before using cJSON in any threads.
* `setlocale` is never called before all calls to cJSON functions have returned.
M
Max Bruckner 已提交
553

554 555 556 557
#### Case Sensitivity

When cJSON was originally created, it didn't follow the JSON standard and didn't make a distinction between uppercase and lowercase letters. If you want the correct, standard compliant, behavior, you need to use the `CaseSensitive` functions where available.

M
Max Bruckner 已提交
558
# Enjoy cJSON!
K
Kevin Branigan 已提交
559

I
IvanVoid 已提交
560
- Dave Gamble, Aug 2009
M
Max Bruckner 已提交
561
- [cJSON contributors](CONTRIBUTORS.md)