los_memory.c 63.4 KB
Newer Older
M
mamingshuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
 * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of
 *    conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
 *    of conditions and the following disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used
 *    to endorse or promote products derived from this software without specific prior written
 *    permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "los_memory.h"
#include "los_memory_pri.h"
#include "sys/param.h"
#include "los_spinlock.h"
#include "los_vm_phys.h"
#include "los_vm_boot.h"
#include "los_vm_filemap.h"
#include "los_task_pri.h"
#ifdef LOSCFG_KERNEL_TRACE
#include "los_trace_frame.h"
#include "los_trace.h"
#endif


/* Used to cut non-essential functions. */
#define OS_MEM_FREE_BY_TASKID   0
Y
YOUR_NAME 已提交
48
#ifdef LOSCFG_KERNEL_VM
M
mamingshuai 已提交
49
#define OS_MEM_EXPAND_ENABLE    1
Y
YOUR_NAME 已提交
50 51 52
#else
#define OS_MEM_EXPAND_ENABLE    0
#endif
M
mamingshuai 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

/* the dump size of current broken node when memcheck error */
#define OS_MEM_NODE_DUMP_SIZE   64
/* column num of the output info of mem node */
#define OS_MEM_COLUMN_NUM       8

UINT8 *m_aucSysMem0 = NULL;
UINT8 *m_aucSysMem1 = NULL;

#ifdef LOSCFG_MEM_MUL_POOL
VOID *g_poolHead = NULL;
#endif

/* The following is the macro definition and interface implementation related to the TLSF. */

/* Supposing a Second Level Index: SLI = 3. */
#define OS_MEM_SLI                      3
/* Giving 1 free list for each small bucket: 4, 8, 12, up to 124. */
#define OS_MEM_SMALL_BUCKET_COUNT       31
#define OS_MEM_SMALL_BUCKET_MAX_SIZE    128
/* Giving OS_MEM_FREE_LIST_NUM free lists for each large bucket. */
#define OS_MEM_LARGE_BUCKET_COUNT       24
#define OS_MEM_FREE_LIST_NUM            (1 << OS_MEM_SLI)
/* OS_MEM_SMALL_BUCKET_MAX_SIZE to the power of 2 is 7. */
#define OS_MEM_LARGE_START_BUCKET       7

/* The count of free list. */
#define OS_MEM_FREE_LIST_COUNT  (OS_MEM_SMALL_BUCKET_COUNT + (OS_MEM_LARGE_BUCKET_COUNT << OS_MEM_SLI))
/* The bitmap is used to indicate whether the free list is empty, 1: not empty, 0: empty. */
#define OS_MEM_BITMAP_WORDS     ((OS_MEM_FREE_LIST_COUNT >> 5) + 1)

#define OS_MEM_BITMAP_MASK 0x1FU

/* Used to find the first bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFFS(UINT32 bitmap)
{
    bitmap &= ~bitmap + 1;
    return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}

/* Used to find the last bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFLS(UINT32 bitmap)
{
    return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}

STATIC INLINE UINT32 OsMemLog2(UINT32 size)
{
    return OsMemFLS(size);
}

/* Get the first level: f = log2(size). */
STATIC INLINE UINT32 OsMemFlGet(UINT32 size)
{
    if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
        return ((size >> 2) - 1); /* 2: The small bucket setup is 4. */
    }
    return OsMemLog2(size);
}

/* Get the second level: s = (size - 2^f) * 2^SLI / 2^f. */
STATIC INLINE UINT32 OsMemSlGet(UINT32 size, UINT32 fl)
{
    return (((size << OS_MEM_SLI) >> fl) - OS_MEM_FREE_LIST_NUM);
}

/* The following is the memory algorithm related macro definition and interface implementation. */

struct OsMemNodeHead {
    UINT32 magic;
    union {
        struct OsMemNodeHead *prev; /* The prev is used for current node points to the previous node */
        struct OsMemNodeHead *next; /* The next is used for last node points to the expand node */
    } ptr;
#ifdef LOSCFG_MEM_LEAKCHECK
    UINTPTR linkReg[LOS_RECORD_LR_CNT];
#endif
    UINT32 sizeAndFlag;
};

struct OsMemUsedNodeHead {
    struct OsMemNodeHead header;
#if OS_MEM_FREE_BY_TASKID
    UINT32 taskID;
#endif
};

struct OsMemFreeNodeHead {
    struct OsMemNodeHead header;
    struct OsMemFreeNodeHead *prev;
    struct OsMemFreeNodeHead *next;
};

struct OsMemPoolInfo {
    VOID *pool;
    UINT32 totalSize;
    UINT32 attr;
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    UINT32 waterLine;   /* Maximum usage size in a memory pool */
    UINT32 curUsedSize; /* Current usage size in a memory pool */
#endif
};

struct OsMemPoolHead {
    struct OsMemPoolInfo info;
    UINT32 freeListBitmap[OS_MEM_BITMAP_WORDS];
    struct OsMemFreeNodeHead *freeList[OS_MEM_FREE_LIST_COUNT];
    SPIN_LOCK_S spinlock;
#ifdef LOSCFG_MEM_MUL_POOL
    VOID *nextPool;
#endif
};

/* Spinlock for mem module, only available on SMP mode */
#define MEM_LOCK(pool, state)       LOS_SpinLockSave(&(pool)->spinlock, &(state))
#define MEM_UNLOCK(pool, state)     LOS_SpinUnlockRestore(&(pool)->spinlock, (state))

/* The memory pool support expand. */
#define OS_MEM_POOL_EXPAND_ENABLE  0x01
/* The memory pool ssupport no lock. */
#define OS_MEM_POOL_LOCK_ENABLE    0x02

#define OS_MEM_NODE_MAGIC        0xABCDDCBA
#define OS_MEM_MIN_ALLOC_SIZE    (sizeof(struct OsMemFreeNodeHead) - sizeof(struct OsMemUsedNodeHead))

#define OS_MEM_NODE_USED_FLAG      0x80000000U
#define OS_MEM_NODE_ALIGNED_FLAG   0x40000000U
#define OS_MEM_NODE_LAST_FLAG      0x20000000U  /* Sentinel Node */
#define OS_MEM_NODE_ALIGNED_AND_USED_FLAG (OS_MEM_NODE_USED_FLAG | OS_MEM_NODE_ALIGNED_FLAG | OS_MEM_NODE_LAST_FLAG)

#define OS_MEM_NODE_GET_ALIGNED_FLAG(sizeAndFlag) \
            ((sizeAndFlag) & OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_SET_ALIGNED_FLAG(sizeAndFlag) \
            ((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_ALIGNED_FLAG))
#define OS_MEM_NODE_GET_ALIGNED_GAPSIZE(sizeAndFlag) \
            ((sizeAndFlag) & ~OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_GET_USED_FLAG(sizeAndFlag) \
            ((sizeAndFlag) & OS_MEM_NODE_USED_FLAG)
#define OS_MEM_NODE_SET_USED_FLAG(sizeAndFlag) \
            ((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_USED_FLAG))
#define OS_MEM_NODE_GET_SIZE(sizeAndFlag) \
            ((sizeAndFlag) & ~OS_MEM_NODE_ALIGNED_AND_USED_FLAG)
#define OS_MEM_NODE_SET_LAST_FLAG(sizeAndFlag) \
                        ((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_LAST_FLAG))
#define OS_MEM_NODE_GET_LAST_FLAG(sizeAndFlag) \
            ((sizeAndFlag) & OS_MEM_NODE_LAST_FLAG)

#define OS_MEM_ALIGN_SIZE           sizeof(UINTPTR)
#define OS_MEM_IS_POW_TWO(value)    ((((UINTPTR)(value)) & ((UINTPTR)(value) - 1)) == 0)
#define OS_MEM_ALIGN(p, alignSize)  (((UINTPTR)(p) + (alignSize) - 1) & ~((UINTPTR)((alignSize) - 1)))
#define OS_MEM_IS_ALIGNED(a, b)     (!(((UINTPTR)(a)) & (((UINTPTR)(b)) - 1)))
#define OS_MEM_NODE_HEAD_SIZE       sizeof(struct OsMemUsedNodeHead)
#define OS_MEM_MIN_POOL_SIZE        (OS_MEM_NODE_HEAD_SIZE + sizeof(struct OsMemPoolHead))
#define OS_MEM_NEXT_NODE(node) \
    ((struct OsMemNodeHead *)(VOID *)((UINT8 *)(node) + OS_MEM_NODE_GET_SIZE((node)->sizeAndFlag)))
#define OS_MEM_FIRST_NODE(pool) \
    (struct OsMemNodeHead *)((UINT8 *)(pool) + sizeof(struct OsMemPoolHead))
#define OS_MEM_END_NODE(pool, size) \
    (struct OsMemNodeHead *)((UINT8 *)(pool) + (size) - OS_MEM_NODE_HEAD_SIZE)
#define OS_MEM_MIDDLE_ADDR_OPEN_END(startAddr, middleAddr, endAddr) \
    (((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) < (UINT8 *)(endAddr)))
#define OS_MEM_MIDDLE_ADDR(startAddr, middleAddr, endAddr) \
    (((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) <= (UINT8 *)(endAddr)))
#define OS_MEM_SET_MAGIC(node)      ((node)->magic = OS_MEM_NODE_MAGIC)
#define OS_MEM_MAGIC_VALID(node)    ((node)->magic == OS_MEM_NODE_MAGIC)

STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node);
STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node);
STATIC VOID OsMemInfoPrint(VOID *pool);
#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave);
#endif

#if OS_MEM_FREE_BY_TASKID
STATIC INLINE VOID OsMemNodeSetTaskID(struct OsMemUsedNodeHead *node)
{
    node->taskID = LOS_CurTaskIDGet();
}
#endif

#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
    pool->info.curUsedSize += size;
    if (pool->info.curUsedSize > pool->info.waterLine) {
        pool->info.waterLine = pool->info.curUsedSize;
    }
}
#else
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
    (VOID)pool;
    (VOID)size;
}
#endif

#if OS_MEM_EXPAND_ENABLE
STATIC INLINE struct OsMemNodeHead *OsMemLastSentinelNodeGet(const struct OsMemNodeHead *sentinelNode)
{
    struct OsMemNodeHead *node = NULL;
    VOID *ptr = sentinelNode->ptr.next;
    UINT32 size = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);

    while ((ptr != NULL) && (size != 0)) {
        node = OS_MEM_END_NODE(ptr, size);
        ptr = node->ptr.next;
        size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
    }

    return node;
}

STATIC INLINE BOOL OsMemSentinelNodeCheck(struct OsMemNodeHead *sentinelNode)
{
    if (!OS_MEM_NODE_GET_USED_FLAG(sentinelNode->sizeAndFlag)) {
        return FALSE;
    }

    if (!OS_MEM_MAGIC_VALID(sentinelNode)) {
        return FALSE;
    }

    return TRUE;
}

STATIC INLINE BOOL OsMemIsLastSentinelNode(struct OsMemNodeHead *sentinelNode)
{
    if (OsMemSentinelNodeCheck(sentinelNode) == FALSE) {
        PRINT_ERR("%s %d, The current sentinel node is invalid\n", __FUNCTION__, __LINE__);
        return TRUE;
    }

    if ((OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag) == 0) ||
        (sentinelNode->ptr.next == NULL)) {
        return TRUE;
    }

    return FALSE;
}

STATIC INLINE VOID OsMemSentinelNodeSet(struct OsMemNodeHead *sentinelNode, VOID *newNode, UINT32 size)
{
    if (sentinelNode->ptr.next != NULL) {
        sentinelNode = OsMemLastSentinelNodeGet(sentinelNode);
    }

    sentinelNode->sizeAndFlag = size;
    sentinelNode->ptr.next = newNode;
    OS_MEM_NODE_SET_USED_FLAG(sentinelNode->sizeAndFlag);
    OS_MEM_NODE_SET_LAST_FLAG(sentinelNode->sizeAndFlag);
}

STATIC INLINE VOID *OsMemSentinelNodeGet(struct OsMemNodeHead *node)
{
    return node->ptr.next;
}

STATIC INLINE struct OsMemNodeHead *PreSentinelNodeGet(const VOID *pool, const struct OsMemNodeHead *node)
{
    UINT32 nextSize;
    struct OsMemNodeHead *nextNode = NULL;
    struct OsMemNodeHead *sentinelNode = NULL;

    sentinelNode = OS_MEM_END_NODE(pool, ((struct OsMemPoolHead *)pool)->info.totalSize);
    while (sentinelNode != NULL) {
        if (OsMemIsLastSentinelNode(sentinelNode)) {
            PRINT_ERR("PreSentinelNodeGet can not find node %#x\n", node);
            return NULL;
        }
        nextNode = OsMemSentinelNodeGet(sentinelNode);
        if (nextNode == node) {
            return sentinelNode;
        }
        nextSize = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);
        sentinelNode = OS_MEM_END_NODE(nextNode, nextSize);
    }

    return NULL;
}

Y
YOUR_NAME 已提交
333 334 335 336 337 338 339 340 341 342 343
UINT32 OsMemLargeNodeFree(const VOID *ptr)
{
    LosVmPage *page = OsVmVaddrToPage((VOID *)ptr);
    if ((page == NULL) || (page->nPages == 0)) {
        return LOS_NOK;
    }
    LOS_PhysPagesFreeContiguous((VOID *)ptr, page->nPages);

    return LOS_OK;
}

M
mamingshuai 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
STATIC INLINE BOOL TryShrinkPool(const VOID *pool, const struct OsMemNodeHead *node)
{
    struct OsMemNodeHead *mySentinel = NULL;
    struct OsMemNodeHead *preSentinel = NULL;
    size_t totalSize = (UINTPTR)node->ptr.prev - (UINTPTR)node;
    size_t nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);

    if (nodeSize != totalSize) {
        return FALSE;
    }

    preSentinel = PreSentinelNodeGet(pool, node);
    if (preSentinel == NULL) {
        return FALSE;
    }

    mySentinel = node->ptr.prev;
    if (OsMemIsLastSentinelNode(mySentinel)) { /* prev node becomes sentinel node */
        preSentinel->ptr.next = NULL;
        OsMemSentinelNodeSet(preSentinel, NULL, 0);
    } else {
        preSentinel->sizeAndFlag = mySentinel->sizeAndFlag;
        preSentinel->ptr.next = mySentinel->ptr.next;
    }

    if (OsMemLargeNodeFree(node) != LOS_OK) {
        PRINT_ERR("TryShrinkPool free %#x failed!\n", node);
        return FALSE;
    }

    return TRUE;
}

STATIC INLINE INT32 OsMemPoolExpandSub(VOID *pool, UINT32 size, UINT32 intSave)
{
    UINT32 tryCount = MAX_SHRINK_PAGECACHE_TRY;
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *newNode = NULL;
    struct OsMemNodeHead *endNode = NULL;

    size = ROUNDUP(size + OS_MEM_NODE_HEAD_SIZE, PAGE_SIZE);
    endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);

RETRY:
    newNode = (struct OsMemNodeHead *)LOS_PhysPagesAllocContiguous(size >> PAGE_SHIFT);
    if (newNode == NULL) {
        if (tryCount > 0) {
            tryCount--;
            MEM_UNLOCK(poolInfo, intSave);
            OsTryShrinkMemory(size >> PAGE_SHIFT);
            MEM_LOCK(poolInfo, intSave);
            goto RETRY;
        }

        PRINT_ERR("OsMemPoolExpand alloc failed size = %u\n", size);
        return -1;
    }
    newNode->sizeAndFlag = (size - OS_MEM_NODE_HEAD_SIZE);
    newNode->ptr.prev = OS_MEM_END_NODE(newNode, size);
    OsMemSentinelNodeSet(endNode, newNode, size);
    OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);

    endNode = OS_MEM_END_NODE(newNode, size);
    (VOID)memset_s(endNode, sizeof(*endNode), 0, sizeof(*endNode));
    endNode->ptr.next = NULL;
    endNode->magic = OS_MEM_NODE_MAGIC;
    OsMemSentinelNodeSet(endNode, NULL, 0);
    OsMemWaterUsedRecord(poolInfo, OS_MEM_NODE_HEAD_SIZE);

    return 0;
}

STATIC INLINE INT32 OsMemPoolExpand(VOID *pool, UINT32 allocSize, UINT32 intSave)
{
    UINT32 expandDefault = MEM_EXPAND_SIZE(LOS_MemPoolSizeGet(pool));
    UINT32 expandSize = MAX(expandDefault, allocSize);
    UINT32 tryCount = 1;
    UINT32 ret;

    do {
        ret = OsMemPoolExpandSub(pool, expandSize, intSave);
        if (ret == 0) {
            return 0;
        }

        if (allocSize > expandDefault) {
            break;
        }
        expandSize = allocSize;
    } while (tryCount--);

    return -1;
}

VOID LOS_MemExpandEnable(VOID *pool)
{
    if (pool == NULL) {
        return;
    }

    ((struct OsMemPoolHead *)pool)->info.attr |= OS_MEM_POOL_EXPAND_ENABLE;
}
#endif

#ifdef LOSCFG_MEM_LEAKCHECK
STATIC INLINE VOID OsMemLinkRegisterRecord(struct OsMemNodeHead *node)
{
    LOS_RecordLR(node->linkReg, LOS_RECORD_LR_CNT, LOS_RECORD_LR_CNT, LOS_OMIT_LR_CNT);
}

STATIC INLINE VOID OsMemUsedNodePrint(struct OsMemNodeHead *node)
{
    UINT32 count;

    if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
#ifdef __LP64__
        PRINTK("0x%018x: ", node);
#else
        PRINTK("0x%010x: ", node);
#endif
        for (count = 0; count < LOS_RECORD_LR_CNT; count++) {
#ifdef __LP64__
            PRINTK(" 0x%018x ", node->linkReg[count]);
#else
            PRINTK(" 0x%010x ", node->linkReg[count]);
#endif
        }
        PRINTK("\n");
    }
}

VOID OsMemUsedNodeShow(VOID *pool)
{
    if (pool == NULL) {
        PRINTK("input param is NULL\n");
        return;
    }
    if (LOS_MemIntegrityCheck(pool)) {
        PRINTK("LOS_MemIntegrityCheck error\n");
        return;
    }
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemNodeHead *endNode = NULL;
    UINT32 size;
    UINT32 intSave;
    UINT32 count;

#ifdef __LP64__
    PRINTK("\n\rnode                ");
#else
    PRINTK("\n\rnode        ");
#endif
    for (count = 0; count < LOS_RECORD_LR_CNT; count++) {
#ifdef __LP64__
        PRINTK("        LR[%u]       ", count);
#else
        PRINTK("    LR[%u]   ", count);
#endif
    }
    PRINTK("\n");

    MEM_LOCK(poolInfo, intSave);
    endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;
         tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
        if (tmpNode == endNode) {
            if (OsMemIsLastSentinelNode(endNode) == FALSE) {
                size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
                tmpNode = OsMemSentinelNodeGet(endNode);
                endNode = OS_MEM_END_NODE(tmpNode, size);
                continue;
            } else {
                break;
            }
        } else {
            OsMemUsedNodePrint(tmpNode);
        }
    }
#else
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode;
         tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
        OsMemUsedNodePrint(tmpNode);
    }
#endif
    MEM_UNLOCK(poolInfo, intSave);
}

STATIC VOID OsMemNodeBacktraceInfo(const struct OsMemNodeHead *tmpNode,
                                   const struct OsMemNodeHead *preNode)
{
    int i;
    PRINTK("\n broken node head LR info: \n");
    for (i = 0; i < LOS_RECORD_LR_CNT; i++) {
        PRINTK(" LR[%d]:%#x\n", i, tmpNode->linkReg[i]);
    }

    PRINTK("\n pre node head LR info: \n");
    for (i = 0; i < LOS_RECORD_LR_CNT; i++) {
        PRINTK(" LR[%d]:%#x\n", i, preNode->linkReg[i]);
    }
}
#endif

STATIC INLINE UINT32 OsMemFreeListIndexGet(UINT32 size)
{
    UINT32 fl = OsMemFlGet(size);
    if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
        return fl;
    }

    UINT32 sl = OsMemSlGet(size, fl);
    return (OS_MEM_SMALL_BUCKET_COUNT + ((fl - OS_MEM_LARGE_START_BUCKET) << OS_MEM_SLI) + sl);
}

STATIC INLINE struct OsMemFreeNodeHead *OsMemFindCurSuitableBlock(struct OsMemPoolHead *poolHead,
                                        UINT32 index, UINT32 size)
{
    struct OsMemFreeNodeHead *node = NULL;

    for (node = poolHead->freeList[index]; node != NULL; node = node->next) {
        if (node->header.sizeAndFlag >= size) {
            return node;
        }
    }

    return NULL;
}

STATIC INLINE UINT32 OsMemNotEmptyIndexGet(struct OsMemPoolHead *poolHead, UINT32 index)
{
    UINT32 mask = poolHead->freeListBitmap[index >> 5]; /* 5: Divide by 32 to calculate the index of the bitmap array. */
    mask &= ~((1 << (index & OS_MEM_BITMAP_MASK)) - 1);
    if (mask != 0) {
        index = OsMemFFS(mask) + (index & ~OS_MEM_BITMAP_MASK);
        return index;
    }

    return OS_MEM_FREE_LIST_COUNT;
}

STATIC INLINE struct OsMemFreeNodeHead *OsMemFindNextSuitableBlock(VOID *pool, UINT32 size, UINT32 *outIndex)
{
    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    UINT32 fl = OsMemFlGet(size);
    UINT32 sl;
    UINT32 index, tmp;
    UINT32 curIndex = OS_MEM_FREE_LIST_COUNT;
    UINT32 mask;

    do {
        if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
            index = fl;
        } else {
            sl = OsMemSlGet(size, fl);
            curIndex = ((fl - OS_MEM_LARGE_START_BUCKET) << OS_MEM_SLI) + sl + OS_MEM_SMALL_BUCKET_COUNT;
            index = curIndex + 1;
        }

        tmp = OsMemNotEmptyIndexGet(poolHead, index);
        if (tmp != OS_MEM_FREE_LIST_COUNT) {
            index = tmp;
            goto DONE;
        }

        for (index = LOS_Align(index + 1, 32); index < OS_MEM_FREE_LIST_COUNT; index += 32) {
            mask = poolHead->freeListBitmap[index >> 5]; /* 5: Divide by 32 to calculate the index of the bitmap array. */
            if (mask != 0) {
                index = OsMemFFS(mask) + index;
                goto DONE;
            }
        }
    } while (0);

    if (curIndex == OS_MEM_FREE_LIST_COUNT) {
        return NULL;
    }

    *outIndex = curIndex;
    return OsMemFindCurSuitableBlock(poolHead, curIndex, size);
DONE:
    *outIndex = index;
    return poolHead->freeList[index];
}

STATIC INLINE VOID OsMemSetFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
    head->freeListBitmap[index >> 5] |= 1U << (index & 0x1f); /* 5: Divide by 32 to calculate the index of the bitmap array. */
}

STATIC INLINE VOID OsMemClearFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
    head->freeListBitmap[index >> 5] &= ~(1U << (index & 0x1f)); /* 5: Divide by 32 to calculate the index of the bitmap array. */
}

STATIC INLINE VOID OsMemListAdd(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
    struct OsMemFreeNodeHead *firstNode = pool->freeList[listIndex];
    if (firstNode != NULL) {
        firstNode->prev = node;
    }
    node->prev = NULL;
    node->next = firstNode;
    pool->freeList[listIndex] = node;
    OsMemSetFreeListBit(pool, listIndex);
    node->header.magic = OS_MEM_NODE_MAGIC;
}

STATIC INLINE VOID OsMemListDelete(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
    if (node == pool->freeList[listIndex]) {
        pool->freeList[listIndex] = node->next;
        if (node->next == NULL) {
            OsMemClearFreeListBit(pool, listIndex);
        } else {
            node->next->prev = NULL;
        }
    } else {
        node->prev->next = node->next;
        if (node->next != NULL) {
            node->next->prev = node->prev;
        }
    }
    node->header.magic = OS_MEM_NODE_MAGIC;
}

STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node)
{
    UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
    if (index >= OS_MEM_FREE_LIST_COUNT) {
        LOS_Panic("The index of free lists is error, index = %u\n", index);
        return;
    }
    OsMemListAdd(pool, index, node);
}

STATIC INLINE VOID OsMemFreeNodeDelete(VOID *pool, struct OsMemFreeNodeHead *node)
{
    UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
    if (index >= OS_MEM_FREE_LIST_COUNT) {
        LOS_Panic("The index of free lists is error, index = %u\n", index);
        return;
    }
    OsMemListDelete(pool, index, node);
}

STATIC INLINE struct OsMemNodeHead *OsMemFreeNodeGet(VOID *pool, UINT32 size)
{
    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    UINT32 index;
    struct OsMemFreeNodeHead *firstNode = OsMemFindNextSuitableBlock(pool, size, &index);
    if (firstNode == NULL) {
        return NULL;
    }

    OsMemListDelete(poolHead, index, firstNode);

    return &firstNode->header;
}

STATIC INLINE VOID OsMemMergeNode(struct OsMemNodeHead *node)
{
    struct OsMemNodeHead *nextNode = NULL;

    node->ptr.prev->sizeAndFlag += node->sizeAndFlag;
    nextNode = (struct OsMemNodeHead *)((UINTPTR)node + node->sizeAndFlag);
    if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
        nextNode->ptr.prev = node->ptr.prev;
    }
}

STATIC INLINE VOID OsMemSplitNode(VOID *pool, struct OsMemNodeHead *allocNode, UINT32 allocSize)
{
    struct OsMemFreeNodeHead *newFreeNode = NULL;
    struct OsMemNodeHead *nextNode = NULL;

    newFreeNode = (struct OsMemFreeNodeHead *)(VOID *)((UINT8 *)allocNode + allocSize);
    newFreeNode->header.ptr.prev = allocNode;
    newFreeNode->header.sizeAndFlag = allocNode->sizeAndFlag - allocSize;
    allocNode->sizeAndFlag = allocSize;
    nextNode = OS_MEM_NEXT_NODE(&newFreeNode->header);
    if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
        nextNode->ptr.prev = &newFreeNode->header;
        if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
            OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
            OsMemMergeNode(nextNode);
        }
    }

    OsMemFreeNodeAdd(pool, newFreeNode);
}

STATIC INLINE VOID *OsMemCreateUsedNode(VOID *addr)
{
    struct OsMemUsedNodeHead *node = (struct OsMemUsedNodeHead *)addr;

#if OS_MEM_FREE_BY_TASKID
    OsMemNodeSetTaskID(node);
#endif

    return node + 1;
}

STATIC UINT32 OsMemPoolInit(VOID *pool, UINT32 size)
{
    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *newNode = NULL;
    struct OsMemNodeHead *endNode = NULL;

    (VOID)memset_s(poolHead, sizeof(struct OsMemPoolHead), 0, sizeof(struct OsMemPoolHead));

    LOS_SpinInit(&poolHead->spinlock);
    poolHead->info.pool = pool;
    poolHead->info.totalSize = size;
    poolHead->info.attr = OS_MEM_POOL_LOCK_ENABLE; /* default attr: lock, not expand. */

    newNode = OS_MEM_FIRST_NODE(pool);
    newNode->sizeAndFlag = (size - sizeof(struct OsMemPoolHead) - OS_MEM_NODE_HEAD_SIZE);
    newNode->ptr.prev = NULL;
    newNode->magic = OS_MEM_NODE_MAGIC;
    OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);

    /* The last mem node */
    endNode = OS_MEM_END_NODE(pool, size);
    endNode->magic = OS_MEM_NODE_MAGIC;
#if OS_MEM_EXPAND_ENABLE
    endNode->ptr.next = NULL;
    OsMemSentinelNodeSet(endNode, NULL, 0);
#else
    endNode->sizeAndFlag = 0;
    endNode->ptr.prev = newNode;
    OS_MEM_NODE_SET_USED_FLAG(endNode->sizeAndFlag);
#endif
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    poolHead->info.curUsedSize = sizeof(struct OsMemPoolHead) + OS_MEM_NODE_HEAD_SIZE;
    poolHead->info.waterLine = poolHead->info.curUsedSize;
#endif

    return LOS_OK;
}

#ifdef LOSCFG_MEM_MUL_POOL
STATIC VOID OsMemPoolDeinit(VOID *pool)
{
    (VOID)memset_s(pool, sizeof(struct OsMemPoolHead), 0, sizeof(struct OsMemPoolHead));
}

STATIC UINT32 OsMemPoolAdd(VOID *pool, UINT32 size)
{
    VOID *nextPool = g_poolHead;
    VOID *curPool = g_poolHead;
    UINTPTR poolEnd;
    while (nextPool != NULL) {
        poolEnd = (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool);
        if (((pool <= nextPool) && (((UINTPTR)pool + size) > (UINTPTR)nextPool)) ||
            (((UINTPTR)pool < poolEnd) && (((UINTPTR)pool + size) >= poolEnd))) {
            PRINT_ERR("pool [%#x, %#x) conflict with pool [%#x, %#x)\n",
                      pool, (UINTPTR)pool + size,
                      nextPool, (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool));
            return LOS_NOK;
        }
        curPool = nextPool;
        nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
    }

    if (g_poolHead == NULL) {
        g_poolHead = pool;
    } else {
        ((struct OsMemPoolHead *)curPool)->nextPool = pool;
    }

    ((struct OsMemPoolHead *)pool)->nextPool = NULL;
    return LOS_OK;
}

STATIC UINT32 OsMemPoolDelete(VOID *pool)
{
    UINT32 ret = LOS_NOK;
    VOID *nextPool = NULL;
    VOID *curPool = NULL;

    do {
        if (pool == g_poolHead) {
            g_poolHead = ((struct OsMemPoolHead *)g_poolHead)->nextPool;
            ret = LOS_OK;
            break;
        }

        curPool = g_poolHead;
        nextPool = g_poolHead;
        while (nextPool != NULL) {
            if (pool == nextPool) {
                ((struct OsMemPoolHead *)curPool)->nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
                ret = LOS_OK;
                break;
            }
            curPool = nextPool;
            nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
        }
    } while (0);

    return ret;
}
#endif

UINT32 LOS_MemInit(VOID *pool, UINT32 size)
{
    if ((pool == NULL) || (size <= OS_MEM_MIN_POOL_SIZE)) {
        return OS_ERROR;
    }

    size = OS_MEM_ALIGN(size, OS_MEM_ALIGN_SIZE);
    if (OsMemPoolInit(pool, size)) {
        return OS_ERROR;
    }

#ifdef LOSCFG_MEM_MUL_POOL
    if (OsMemPoolAdd(pool, size)) {
        (VOID)OsMemPoolDeinit(pool);
        return OS_ERROR;
    }
#endif

#ifdef LOSCFG_KERNEL_TRACE
    LOS_TraceReg(LOS_TRACE_MEM_TIME, OsMemTimeTrace, LOS_TRACE_MEM_TIME_NAME, LOS_TRACE_ENABLE);
    LOS_TraceReg(LOS_TRACE_MEM_INFO, OsMemInfoTrace, LOS_TRACE_MEM_INFO_NAME, LOS_TRACE_ENABLE);
#endif

    return LOS_OK;
}

#ifdef LOSCFG_MEM_MUL_POOL
UINT32 LOS_MemDeInit(VOID *pool)
{
    if (pool == NULL) {
        return OS_ERROR;
    }

    if (OsMemPoolDelete(pool)) {
        return OS_ERROR;
    }

    OsMemPoolDeinit(pool);

#ifdef LOSCFG_KERNEL_TRACE
    LOS_TraceUnreg(LOS_TRACE_MEM_TIME);
    LOS_TraceUnreg(LOS_TRACE_MEM_INFO);
#endif

    return LOS_OK;
}

UINT32 LOS_MemPoolList(VOID)
{
    VOID *nextPool = g_poolHead;
    UINT32 index = 0;
    while (nextPool != NULL) {
        PRINTK("pool%u :\n", index);
        index++;
        OsMemInfoPrint(nextPool);
        nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
    }
    return index;
}
#endif

STATIC INLINE VOID *OsMemAlloc(struct OsMemPoolHead *pool, UINT32 size, UINT32 intSave)
{
    struct OsMemNodeHead *allocNode = NULL;

#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
    if (OsMemAllocCheck(pool, intSave) == LOS_NOK) {
        return NULL;
    }
#endif

    UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
    if (allocSize == 0) {
        return NULL;
    }

#if OS_MEM_EXPAND_ENABLE
retry:
#endif
    allocNode = OsMemFreeNodeGet(pool, allocSize);
    if (allocNode == NULL) {
#if OS_MEM_EXPAND_ENABLE
        if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
            INT32 ret = OsMemPoolExpand(pool, allocSize, intSave);
            if (ret == 0) {
                goto retry;
            }
        }
#endif
        MEM_UNLOCK(pool, intSave);
        PRINT_ERR("---------------------------------------------------"
                  "--------------------------------------------------------\n");
        OsMemInfoPrint(pool);
        PRINT_ERR("[%s] No suitable free block, require free node size: 0x%x\n", __FUNCTION__, allocSize);
        PRINT_ERR("----------------------------------------------------"
                  "-------------------------------------------------------\n");
        MEM_LOCK(pool, intSave);
        return NULL;
    }

    if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= allocNode->sizeAndFlag) {
        OsMemSplitNode(pool, allocNode, allocSize);
    }

    OS_MEM_NODE_SET_USED_FLAG(allocNode->sizeAndFlag);
    OsMemWaterUsedRecord(pool, OS_MEM_NODE_GET_SIZE(allocNode->sizeAndFlag));

#ifdef LOSCFG_MEM_LEAKCHECK
    OsMemLinkRegisterRecord(allocNode);
#endif
    return OsMemCreateUsedNode((VOID *)allocNode);
}

VOID *LOS_MemAlloc(VOID *pool, UINT32 size)
{
#ifdef LOSCFG_KERNEL_TRACE
    UINT64 start = HalClockGetCycles();
#endif

    if ((pool == NULL) || (size == 0)) {
        return (size > 0) ? OsVmBootMemAlloc(size) : NULL;
    }

    if (size < OS_MEM_MIN_ALLOC_SIZE) {
        size = OS_MEM_MIN_ALLOC_SIZE;
    }

    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    VOID *ptr = NULL;
    UINT32 intSave;

    do {
        if (OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
            break;
        }
        MEM_LOCK(poolHead, intSave);
        ptr = OsMemAlloc(poolHead, size, intSave);
        MEM_UNLOCK(poolHead, intSave);
    } while (0);

#ifdef LOSCFG_KERNEL_TRACE
    UINT64 end = HalClockGetCycles();
    UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
    LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_MALLOC, timeUsed);

    LOS_MEM_POOL_STATUS poolStatus = {0};
    (VOID)LOS_MemInfoGet(pool, &poolStatus);
    UINT8 fragment = 100 - poolStatus.maxFreeNodeSize * 100 / poolStatus.totalFreeSize; /* 100: percent denominator. */
    UINT8 usage = LOS_MemTotalUsedGet(pool) * 100 / LOS_MemPoolSizeGet(pool); /* 100: percent denominator. */
    LOS_Trace(LOS_TRACE_MEM_INFO, (UINTPTR)pool & MEM_POOL_ADDR_MASK, fragment, usage, poolStatus.totalFreeSize,
              poolStatus.maxFreeNodeSize, poolStatus.usedNodeNum, poolStatus.freeNodeNum);
#endif

    return ptr;
}

VOID *LOS_MemAllocAlign(VOID *pool, UINT32 size, UINT32 boundary)
{
#ifdef LOSCFG_KERNEL_TRACE
    UINT64 start = HalClockGetCycles();
#endif

    UINT32 gapSize;

    if ((pool == NULL) || (size == 0) || (boundary == 0) || !OS_MEM_IS_POW_TWO(boundary) ||
        !OS_MEM_IS_ALIGNED(boundary, sizeof(VOID *))) {
        return NULL;
    }

    if (size < OS_MEM_MIN_ALLOC_SIZE) {
        size = OS_MEM_MIN_ALLOC_SIZE;
    }

    /*
     * sizeof(gapSize) bytes stores offset between alignedPtr and ptr,
     * the ptr has been OS_MEM_ALIGN_SIZE(4 or 8) aligned, so maximum
     * offset between alignedPtr and ptr is boundary - OS_MEM_ALIGN_SIZE
     */
    if ((boundary - sizeof(gapSize)) > ((UINT32)(-1) - size)) {
        return NULL;
    }

    UINT32 useSize = (size + boundary) - sizeof(gapSize);
    if (OS_MEM_NODE_GET_USED_FLAG(useSize) || OS_MEM_NODE_GET_ALIGNED_FLAG(useSize)) {
        return NULL;
    }

    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    UINT32 intSave;
    VOID *ptr = NULL;
    VOID *alignedPtr = NULL;

    do {
        MEM_LOCK(poolHead, intSave);
        ptr = OsMemAlloc(pool, useSize, intSave);
        MEM_UNLOCK(poolHead, intSave);
        alignedPtr = (VOID *)OS_MEM_ALIGN(ptr, boundary);
        if (ptr == alignedPtr) {
            break;
        }

        /* store gapSize in address (ptr - 4), it will be checked while free */
        gapSize = (UINT32)((UINTPTR)alignedPtr - (UINTPTR)ptr);
        struct OsMemUsedNodeHead *allocNode = (struct OsMemUsedNodeHead *)ptr - 1;
        OS_MEM_NODE_SET_ALIGNED_FLAG(allocNode->header.sizeAndFlag);
        OS_MEM_NODE_SET_ALIGNED_FLAG(gapSize);
        *(UINT32 *)((UINTPTR)alignedPtr - sizeof(gapSize)) = gapSize;
        ptr = alignedPtr;
    } while (0);

#ifdef LOSCFG_KERNEL_TRACE
    UINT64 end = HalClockGetCycles();
    UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
    LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_MEMALIGN, timeUsed);
#endif

    return ptr;
}

STATIC INLINE BOOL OsMemAddrValidCheck(const struct OsMemPoolHead *pool, const VOID *addr)
{
    UINT32 size;

    /* First node prev is NULL */
    if (addr == NULL) {
        return TRUE;
    }

    size = pool->info.totalSize;
    if (OS_MEM_MIDDLE_ADDR_OPEN_END(pool + 1, addr, (UINTPTR)pool + size)) {
        return TRUE;
    }
#if OS_MEM_EXPAND_ENABLE
    struct OsMemNodeHead *node = NULL;
    struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, size);
    while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
        size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
        node = OsMemSentinelNodeGet(sentinel);
        sentinel = OS_MEM_END_NODE(node, size);
        if (OS_MEM_MIDDLE_ADDR_OPEN_END(node, addr, (UINTPTR)node + size)) {
            return TRUE;
        }
    }
#endif
    return FALSE;
}

STATIC INLINE BOOL OsMemIsNodeValid(const struct OsMemNodeHead *node, const struct OsMemNodeHead *startNode,
                                    const struct OsMemNodeHead *endNode,
                                    const struct OsMemPoolHead *poolInfo)
{
    if (!OS_MEM_MIDDLE_ADDR(startNode, node, endNode)) {
        return FALSE;
    }

    if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
        if (!OS_MEM_MAGIC_VALID(node)) {
            return FALSE;
        }
        return TRUE;
    }

    if (!OsMemAddrValidCheck(poolInfo, node->ptr.prev)) {
        return FALSE;
    }

    return TRUE;
}

STATIC UINT32 OsMemCheckUsedNode(const struct OsMemPoolHead *pool, const struct OsMemNodeHead *node)
{
    struct OsMemNodeHead *startNode = (struct OsMemNodeHead *)OS_MEM_FIRST_NODE(pool);
    struct OsMemNodeHead *endNode = (struct OsMemNodeHead *)OS_MEM_END_NODE(pool, pool->info.totalSize);
    struct OsMemNodeHead *nextNode = NULL;
    BOOL doneFlag = FALSE;

    do {
        do {
            if (!OsMemIsNodeValid(node, startNode, endNode, pool)) {
                break;
            }

            if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
                break;
            }

            nextNode = OS_MEM_NEXT_NODE(node);
            if (!OsMemIsNodeValid(nextNode, startNode, endNode, pool)) {
                break;
            }

            if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
                if (nextNode->ptr.prev != node) {
                    break;
                }
            }

            if ((node != startNode) &&
                ((!OsMemIsNodeValid(node->ptr.prev, startNode, endNode, pool)) ||
                (OS_MEM_NEXT_NODE(node->ptr.prev) != node))) {
                break;
            }
            doneFlag = TRUE;
        } while (0);

        if (!doneFlag) {
#if OS_MEM_EXPAND_ENABLE
            if (OsMemIsLastSentinelNode(endNode) == FALSE) {
                startNode = OsMemSentinelNodeGet(endNode);
                endNode = OS_MEM_END_NODE(startNode, OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag));
                continue;
            }
#endif
            return LOS_NOK;
        }
    } while (!doneFlag);

    return LOS_OK;
}

STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node)
{
    UINT32 ret = OsMemCheckUsedNode(pool, node);
    if (ret != LOS_OK) {
        PRINT_ERR("OsMemFree check error!\n");
        return ret;
    }

#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    pool->info.curUsedSize -= OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#endif

    node->sizeAndFlag = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#ifdef LOSCFG_MEM_LEAKCHECK
    OsMemLinkRegisterRecord(node);
#endif
    struct OsMemNodeHead *preNode = node->ptr.prev; /* merage preNode */
    if ((preNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
        OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)preNode);
        OsMemMergeNode(node);
        node = preNode;
    }

    struct OsMemNodeHead *nextNode = OS_MEM_NEXT_NODE(node); /* merage nextNode */
    if ((nextNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
        OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
        OsMemMergeNode(nextNode);
    }

#if OS_MEM_EXPAND_ENABLE
    if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
        /* if this is a expand head node, and all unused, free it to pmm */
        if ((node->ptr.prev != NULL) && (node->ptr.prev > node)) {
            if (TryShrinkPool(pool, node)) {
                return LOS_OK;
            }
        }
    }
#endif
    OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)node);

    return ret;
}

UINT32 LOS_MemFree(VOID *pool, VOID *ptr)
{
#ifdef LOSCFG_KERNEL_TRACE
    UINT64 start = HalClockGetCycles();
#endif

    if ((pool == NULL) || (ptr == NULL) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *)) ||
        !OS_MEM_IS_ALIGNED(ptr, sizeof(VOID *))) {
        return LOS_NOK;
    }

    UINT32 ret = LOS_NOK;
    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *node = NULL;
    UINT32 intSave;

    do {
        UINT32 gapSize = *(UINT32 *)((UINTPTR)ptr - sizeof(UINT32));
        if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize) && OS_MEM_NODE_GET_USED_FLAG(gapSize)) {
            PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
            break;
        }

        node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);

        if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize)) {
            gapSize = OS_MEM_NODE_GET_ALIGNED_GAPSIZE(gapSize);
            if ((gapSize & (OS_MEM_ALIGN_SIZE - 1)) || (gapSize > ((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE))) {
                PRINT_ERR("illegal gapSize: 0x%x\n", gapSize);
                break;
            }
            node = (struct OsMemNodeHead *)((UINTPTR)ptr - gapSize - OS_MEM_NODE_HEAD_SIZE);
        }
        MEM_LOCK(poolHead, intSave);
        ret = OsMemFree(poolHead, node);
        MEM_UNLOCK(poolHead, intSave);
    } while (0);

#ifdef LOSCFG_KERNEL_TRACE
    UINT64 end = HalClockGetCycles();
    UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
    LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_FREE, timeUsed);
#endif

    return ret;
}

STATIC INLINE VOID OsMemReAllocSmaller(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node, UINT32 nodeSize)
{
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
#endif
    node->sizeAndFlag = nodeSize;
    if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= nodeSize) {
        OsMemSplitNode(pool, node, allocSize);
        OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
        poolInfo->info.curUsedSize -= nodeSize - allocSize;
#endif
    }
    OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
#ifdef LOSCFG_MEM_LEAKCHECK
    OsMemLinkRegisterRecord(node);
#endif
}

STATIC INLINE VOID OsMemMergeNodeForReAllocBigger(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node,
                                                  UINT32 nodeSize, struct OsMemNodeHead *nextNode)
{
    node->sizeAndFlag = nodeSize;
    OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
    OsMemMergeNode(nextNode);
    if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= node->sizeAndFlag) {
        OsMemSplitNode(pool, node, allocSize);
    }
    OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
    OsMemWaterUsedRecord((struct OsMemPoolHead *)pool, node->sizeAndFlag - nodeSize);
#ifdef LOSCFG_MEM_LEAKCHECK
    OsMemLinkRegisterRecord(node);
#endif
}

STATIC INLINE VOID *OsGetRealPtr(const VOID *pool, VOID *ptr)
{
    VOID *realPtr = ptr;
    UINT32 gapSize = *((UINT32 *)((UINTPTR)ptr - sizeof(UINT32)));

    if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize) && OS_MEM_NODE_GET_USED_FLAG(gapSize)) {
        PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
        return NULL;
    }
    if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize)) {
        gapSize = OS_MEM_NODE_GET_ALIGNED_GAPSIZE(gapSize);
        if ((gapSize & (OS_MEM_ALIGN_SIZE - 1)) ||
            (gapSize > ((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE - (UINTPTR)pool))) {
            PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
            return NULL;
        }
        realPtr = (VOID *)((UINTPTR)ptr - (UINTPTR)gapSize);
    }
    return realPtr;
}

STATIC INLINE VOID *OsMemRealloc(struct OsMemPoolHead *pool, const VOID *ptr,
                struct OsMemNodeHead *node, UINT32 size, UINT32 intSave)
{
    struct OsMemNodeHead *nextNode = NULL;
    UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
    UINT32 nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
    VOID *tmpPtr = NULL;

    if (nodeSize >= allocSize) {
        OsMemReAllocSmaller(pool, allocSize, node, nodeSize);
        return (VOID *)ptr;
    }

    nextNode = OS_MEM_NEXT_NODE(node);
    if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag) &&
        ((nextNode->sizeAndFlag + nodeSize) >= allocSize)) {
        OsMemMergeNodeForReAllocBigger(pool, allocSize, node, nodeSize, nextNode);
        return (VOID *)ptr;
    }

    tmpPtr = OsMemAlloc(pool, size, intSave);
    if (tmpPtr != NULL) {
        if (memcpy_s(tmpPtr, size, ptr, (nodeSize - OS_MEM_NODE_HEAD_SIZE)) != EOK) {
            MEM_UNLOCK(pool, intSave);
            (VOID)LOS_MemFree((VOID *)pool, (VOID *)tmpPtr);
            MEM_LOCK(pool, intSave);
            return NULL;
        }
        (VOID)OsMemFree(pool, node);
    }
    return tmpPtr;
}

VOID *LOS_MemRealloc(VOID *pool, VOID *ptr, UINT32 size)
{
#ifdef LOSCFG_KERNEL_TRACE
    UINT64 start = HalClockGetCycles();
#endif

    if ((pool == NULL) || OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
        return NULL;
    }

    if (size < OS_MEM_MIN_ALLOC_SIZE) {
        size = OS_MEM_MIN_ALLOC_SIZE;
    }

    if (ptr == NULL) {
        return LOS_MemAlloc(pool, size);
    }

    if (size == 0) {
        (VOID)LOS_MemFree(pool, ptr);
        return NULL;
    }

    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *node = NULL;
    VOID *newPtr = NULL;
    UINT32 intSave;

    MEM_LOCK(poolHead, intSave);
    do {
        ptr = OsGetRealPtr(pool, ptr);
        if (ptr == NULL) {
            break;
        }

        node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);
        if (OsMemCheckUsedNode(pool, node) != LOS_OK) {
            break;
        }

        newPtr = OsMemRealloc(pool, ptr, node, size, intSave);
    } while (0);
    MEM_UNLOCK(poolHead, intSave);

#ifdef LOSCFG_KERNEL_TRACE
    UINT64 end = HalClockGetCycles();
    UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
    LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_REALLOC, timeUsed);
#endif

    return newPtr;
}

#if OS_MEM_FREE_BY_TASKID
UINT32 LOS_MemFreeByTaskID(VOID *pool, UINT32 taskID)
{
    if (pool == NULL) {
        return OS_ERROR;
    }

    if (taskID >= LOSCFG_BASE_CORE_TSK_LIMIT) {
        return OS_ERROR;
    }

    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemUsedNodeHead *node = NULL;
    struct OsMemNodeHead *endNode = NULL;
    UINT32 size;
    UINT32 intSave;

    MEM_LOCK(poolHead, intSave);
    endNode = OS_MEM_END_NODE(pool, poolHead->info.totalSize);
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;) {
        if (tmpNode == endNode) {
            if (OsMemIsLastSentinelNode(endNode) == FALSE) {
                size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
                tmpNode = OsMemSentinelNodeGet(endNode);
                endNode = OS_MEM_END_NODE(tmpNode, size);
                continue;
            } else {
                break;
            }
        } else {
            if (!OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
                tmpNode = OS_MEM_NEXT_NODE(tmpNode);
                continue;
            }

            node = (struct OsMemUsedNodeHead *)tmpNode;
            tmpNode = OS_MEM_NEXT_NODE(tmpNode);

            if (node->taskID == taskID) {
                OsMemFree(poolHead, &node->header);
            }
        }
    }
    MEM_UNLOCK(poolHead, intSave);

    return LOS_OK;
}
#endif

UINT32 LOS_MemPoolSizeGet(const VOID *pool)
{
    UINT32 count = 0;

    if (pool == NULL) {
        return LOS_NOK;
    }

    count += ((struct OsMemPoolHead *)pool)->info.totalSize;

#if OS_MEM_EXPAND_ENABLE
    UINT32 size;
    struct OsMemNodeHead *node = NULL;
    struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, count);

    while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
        size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
        node = OsMemSentinelNodeGet(sentinel);
        sentinel = OS_MEM_END_NODE(node, size);
        count += size;
    }
#endif
    return count;
}

UINT32 LOS_MemTotalUsedGet(VOID *pool)
{
    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *endNode = NULL;
    UINT32 memUsed = 0;
    UINT32 intSave;

    if (pool == NULL) {
        return LOS_NOK;
    }

    MEM_LOCK(poolInfo, intSave);
    endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
    UINT32 size;
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;) {
        if (tmpNode == endNode) {
            memUsed += OS_MEM_NODE_HEAD_SIZE;
            if (OsMemIsLastSentinelNode(endNode) == FALSE) {
                size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
                tmpNode = OsMemSentinelNodeGet(endNode);
                endNode = OS_MEM_END_NODE(tmpNode, size);
                continue;
            } else {
                break;
            }
        } else {
            if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
                memUsed += OS_MEM_NODE_GET_SIZE(tmpNode->sizeAndFlag);
            }
            tmpNode = OS_MEM_NEXT_NODE(tmpNode);
        }
    }
#else
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode;) {
        if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
            memUsed += OS_MEM_NODE_GET_SIZE(tmpNode->sizeAndFlag);
        }
        tmpNode = OS_MEM_NEXT_NODE(tmpNode);
    }
#endif
    MEM_UNLOCK(poolInfo, intSave);

    return memUsed;
}

STATIC INLINE VOID OsMemMagicCheckPrint(struct OsMemNodeHead **tmpNode)
{
    PRINT_ERR("[%s], %d, memory check error!\n"
              "memory used but magic num wrong, magic num = %#x\n",
              __FUNCTION__, __LINE__, (*tmpNode)->magic);
}

STATIC UINT32 OsMemAddrValidCheckPrint(const VOID *pool, struct OsMemFreeNodeHead **tmpNode)
{
    if (!OsMemAddrValidCheck(pool, (*tmpNode)->prev)) {
        PRINT_ERR("[%s], %d, memory check error!\n"
                  " freeNode.prev:%#x is out of legal mem range\n",
                  __FUNCTION__, __LINE__, (*tmpNode)->prev);
        return LOS_NOK;
    }
    if (!OsMemAddrValidCheck(pool, (*tmpNode)->next)) {
        PRINT_ERR("[%s], %d, memory check error!\n"
                  " freeNode.next:%#x is out of legal mem range\n",
                  __FUNCTION__, __LINE__, (*tmpNode)->next);
        return LOS_NOK;
    }
    return LOS_OK;
}

STATIC UINT32 OsMemIntegrityCheckSub(struct OsMemNodeHead **tmpNode, const VOID *pool,
                const struct OsMemNodeHead *endNode)
{
    if (!OS_MEM_MAGIC_VALID(*tmpNode)) {
        OsMemMagicCheckPrint(tmpNode);
        return LOS_NOK;
    }

    if (!OS_MEM_NODE_GET_USED_FLAG((*tmpNode)->sizeAndFlag)) { /* is free node, check free node range */
        if (OsMemAddrValidCheckPrint(pool, (struct OsMemFreeNodeHead **)tmpNode)) {
            return LOS_NOK;
        }
    }
    return LOS_OK;
}

STATIC UINT32 OsMemFreeListNodeCheck(const struct OsMemPoolHead *pool,
                const struct OsMemFreeNodeHead *node)
{
    if (!OsMemAddrValidCheck(pool, node) ||
        !OsMemAddrValidCheck(pool, node->prev) ||
        !OsMemAddrValidCheck(pool, node->next) ||
        !OsMemAddrValidCheck(pool, node->header.ptr.prev)) {
        return LOS_NOK;
    }

    if (!OS_MEM_IS_ALIGNED(node, sizeof(VOID *)) ||
        !OS_MEM_IS_ALIGNED(node->prev, sizeof(VOID *)) ||
        !OS_MEM_IS_ALIGNED(node->next, sizeof(VOID *)) ||
        !OS_MEM_IS_ALIGNED(node->header.ptr.prev, sizeof(VOID *))) {
        return LOS_NOK;
    }

    return LOS_OK;
}

STATIC VOID OsMemPoolHeadCheck(const struct OsMemPoolHead *pool)
{
    struct OsMemFreeNodeHead *tmpNode = NULL;
    UINT32 index;
    UINT32 flag = 0;

    if ((pool->info.pool != pool) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *))) {
        PRINT_ERR("wrong mem pool addr: %#x, func:%s, line:%d\n", pool, __FUNCTION__, __LINE__);
        return;
    }

    for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
        for (tmpNode = pool->freeList[index]; tmpNode != NULL; tmpNode = tmpNode->next) {
            if (OsMemFreeListNodeCheck(pool, tmpNode)) {
                flag = 1;
                PRINT_ERR("FreeListIndex: %u, node: %#x, bNode: %#x, prev: %#x, next: %#x\n",
                          index, tmpNode, tmpNode->header.ptr.prev, tmpNode->prev, tmpNode->next);
            }
        }
    }

    if (flag) {
        PRINTK("mem pool info: poolAddr: %#x, poolSize: 0x%x\n", pool, pool->info.totalSize);
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
        PRINTK("mem pool info: poolWaterLine: 0x%x, poolCurUsedSize: 0x%x\n", pool->info.waterLine,
               pool->info.curUsedSize);
#endif
#if OS_MEM_EXPAND_ENABLE
        UINT32 size;
        struct OsMemNodeHead *node = NULL;
        struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, pool->info.totalSize);
        while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
            size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
            node = OsMemSentinelNodeGet(sentinel);
            sentinel = OS_MEM_END_NODE(node, size);
            PRINTK("expand node info: nodeAddr: %#x, nodeSize: 0x%x\n", node, size);
        }
#endif
    }
}

STATIC UINT32 OsMemIntegrityCheck(const struct OsMemPoolHead *pool, struct OsMemNodeHead **tmpNode,
                struct OsMemNodeHead **preNode)
{
    struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);

    OsMemPoolHeadCheck(pool);

    *preNode = OS_MEM_FIRST_NODE(pool);
    do {
        for (*tmpNode = *preNode; *tmpNode < endNode; *tmpNode = OS_MEM_NEXT_NODE(*tmpNode)) {
            if (OsMemIntegrityCheckSub(tmpNode, pool, endNode) == LOS_NOK) {
                return LOS_NOK;
            }
            *preNode = *tmpNode;
        }
#if OS_MEM_EXPAND_ENABLE
        if (OsMemIsLastSentinelNode(*tmpNode) == FALSE) {
            *preNode = OsMemSentinelNodeGet(*tmpNode);
            endNode = OS_MEM_END_NODE(*preNode, OS_MEM_NODE_GET_SIZE((*tmpNode)->sizeAndFlag));
        } else
#endif
        {
            break;
        }
    } while (1);
    return LOS_OK;
}

STATIC VOID OsMemNodeInfo(const struct OsMemNodeHead *tmpNode,
                          const struct OsMemNodeHead *preNode)
{
    struct OsMemUsedNodeHead *usedNode = NULL;
    struct OsMemFreeNodeHead *freeNode = NULL;

    if (tmpNode == preNode) {
        PRINTK("\n the broken node is the first node\n");
    }

    if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
        usedNode = (struct OsMemUsedNodeHead *)tmpNode;
        PRINTK("\n broken node head: %#x  %#x  %#x, ",
               usedNode->header.ptr.prev, usedNode->header.magic, usedNode->header.sizeAndFlag);
    } else {
        freeNode = (struct OsMemFreeNodeHead *)tmpNode;
        PRINTK("\n broken node head: %#x  %#x  %#x  %#x, ",
               freeNode->header.ptr.prev, freeNode->next, freeNode->prev, freeNode->header.magic,
               freeNode->header.sizeAndFlag);
    }

    if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
        usedNode = (struct OsMemUsedNodeHead *)preNode;
        PRINTK("prev node head: %#x  %#x  %#x\n",
               usedNode->header.ptr.prev, usedNode->header.magic, usedNode->header.sizeAndFlag);
    } else {
        freeNode = (struct OsMemFreeNodeHead *)preNode;
        PRINTK("prev node head: %#x  %#x  %#x  %#x, ",
               freeNode->header.ptr.prev, freeNode->next, freeNode->prev, freeNode->header.magic,
               freeNode->header.sizeAndFlag);
    }

#ifdef LOSCFG_MEM_LEAKCHECK
    OsMemNodeBacktraceInfo(tmpNode, preNode);
#endif

    PRINTK("\n---------------------------------------------\n");
    PRINTK(" dump mem tmpNode:%#x ~ %#x\n", tmpNode, ((UINTPTR)tmpNode + OS_MEM_NODE_DUMP_SIZE));
    OsDumpMemByte(OS_MEM_NODE_DUMP_SIZE, (UINTPTR)tmpNode);
    PRINTK("\n---------------------------------------------\n");
    if (preNode != tmpNode) {
        PRINTK(" dump mem :%#x ~ tmpNode:%#x\n", ((UINTPTR)tmpNode - OS_MEM_NODE_DUMP_SIZE), tmpNode);
        OsDumpMemByte(OS_MEM_NODE_DUMP_SIZE, ((UINTPTR)tmpNode - OS_MEM_NODE_DUMP_SIZE));
        PRINTK("\n---------------------------------------------\n");
    }
}

STATIC VOID OsMemIntegrityCheckError(struct OsMemPoolHead *pool,
                                     const struct OsMemNodeHead *tmpNode,
                                     const struct OsMemNodeHead *preNode,
                                     UINT32 intSave)
{
    OsMemNodeInfo(tmpNode, preNode);

#if OS_MEM_FREE_BY_TASKID
    LosTaskCB *taskCB = NULL;
    if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
        struct OsMemUsedNodeHead *usedNode = (struct OsMemUsedNodeHead *)preNode;
        UINT32 taskID = usedNode->taskID;
        if (OS_TID_CHECK_INVALID(taskID)) {
            MEM_UNLOCK(pool, intSave);
            LOS_Panic("Task ID %u in pre node is invalid!\n", taskID);
            return;
        }

        taskCB = OS_TCB_FROM_TID(taskID);
        if (OsTaskIsUnused(taskCB) || (taskCB->taskEntry == NULL)) {
            MEM_UNLOCK(pool, intSave);
            LOS_Panic("\r\nTask ID %u in pre node is not created!\n", taskID);
            return;
        }
    } else {
        PRINTK("The prev node is free\n");
    }
    MEM_UNLOCK(pool, intSave);
    LOS_Panic("cur node: %#x\npre node: %#x\npre node was allocated by task:%s\n",
              tmpNode, preNode, taskCB->taskName);
#else
    MEM_UNLOCK(pool, intSave);
    LOS_Panic("Memory interity check error, cur node: %#x, pre node: %#x\n", tmpNode, preNode);
#endif
}

#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave)
{
    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemNodeHead *preNode = NULL;

    if (OsMemIntegrityCheck(pool, &tmpNode, &preNode)) {
        OsMemIntegrityCheckError(pool, tmpNode, preNode, intSave);
        return LOS_NOK;
    }
    return LOS_OK;
}
#endif

UINT32 LOS_MemIntegrityCheck(const VOID *pool)
{
    if (pool == NULL) {
        return LOS_NOK;
    }

    struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemNodeHead *preNode = NULL;
    UINT32 intSave = 0;

    MEM_LOCK(poolHead, intSave);
    if (OsMemIntegrityCheck(poolHead, &tmpNode, &preNode)) {
        goto ERROR_OUT;
    }
    MEM_UNLOCK(poolHead, intSave);
    return LOS_OK;

ERROR_OUT:
    OsMemIntegrityCheckError(poolHead, tmpNode, preNode, intSave);
    return LOS_NOK;
}

STATIC INLINE VOID OsMemInfoGet(struct OsMemPoolHead *poolInfo, struct OsMemNodeHead *node,
                LOS_MEM_POOL_STATUS *poolStatus)
{
    UINT32 totalUsedSize = 0;
    UINT32 totalFreeSize = 0;
    UINT32 usedNodeNum = 0;
    UINT32 freeNodeNum = 0;
    UINT32 maxFreeSize = 0;
    UINT32 size;

    if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
        size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
        ++freeNodeNum;
        totalFreeSize += size;
        if (maxFreeSize < size) {
            maxFreeSize = size;
        }
    } else {
        size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
        ++usedNodeNum;
        totalUsedSize += size;
    }

    poolStatus->totalUsedSize += totalUsedSize;
    poolStatus->totalFreeSize += totalFreeSize;
    poolStatus->maxFreeNodeSize = MAX(poolStatus->maxFreeNodeSize, maxFreeSize);
    poolStatus->usedNodeNum += usedNodeNum;
    poolStatus->freeNodeNum += freeNodeNum;
}

UINT32 LOS_MemInfoGet(VOID *pool, LOS_MEM_POOL_STATUS *poolStatus)
{
    struct OsMemPoolHead *poolInfo = pool;

    if (poolStatus == NULL) {
        PRINT_ERR("can't use NULL addr to save info\n");
        return LOS_NOK;
    }

    if ((pool == NULL) || (poolInfo->info.pool != pool)) {
        PRINT_ERR("wrong mem pool addr: %#x, line:%d\n", poolInfo, __LINE__);
        return LOS_NOK;
    }

    struct OsMemNodeHead *tmpNode = NULL;
    struct OsMemNodeHead *endNode = NULL;
    UINT32 intSave;

    MEM_LOCK(poolInfo, intSave);
    endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
    UINT32 size;
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
        if (tmpNode == endNode) {
            poolStatus->totalUsedSize += OS_MEM_NODE_HEAD_SIZE;
            poolStatus->usedNodeNum++;
            if (OsMemIsLastSentinelNode(endNode) == FALSE) {
                size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
                tmpNode = OsMemSentinelNodeGet(endNode);
                endNode = OS_MEM_END_NODE(tmpNode, size);
                continue;
            } else {
                break;
            }
        } else {
            OsMemInfoGet(poolInfo, tmpNode, poolStatus);
        }
    }
#else
    for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
        OsMemInfoGet(poolInfo, tmpNode, poolStatus);
    }
#endif
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    poolStatus->usageWaterLine = poolInfo->info.waterLine;
#endif
    MEM_UNLOCK(poolInfo, intSave);

    return LOS_OK;
}

STATIC VOID OsMemInfoPrint(VOID *pool)
{
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
    LOS_MEM_POOL_STATUS status = {0};

    if (LOS_MemInfoGet(pool, &status) == LOS_NOK) {
        return;
    }

#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
    PRINTK("pool addr          pool size    used size     free size    "
           "max free node size   used node num     free node num      UsageWaterLine\n");
    PRINTK("---------------    --------     -------       --------     "
           "--------------       -------------      ------------      ------------\n");
    PRINTK("%-16#x   0x%-8x   0x%-8x    0x%-8x   0x%-16x   0x%-13x    0x%-13x    0x%-13x\n",
           poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.totalUsedSize,
           status.totalFreeSize, status.maxFreeNodeSize, status.usedNodeNum,
           status.freeNodeNum, status.usageWaterLine);
#else
    PRINTK("pool addr          pool size    used size     free size    "
           "max free node size   used node num     free node num\n");
    PRINTK("---------------    --------     -------       --------     "
           "--------------       -------------      ------------\n");
    PRINTK("%-16#x   0x%-8x   0x%-8x    0x%-8x   0x%-16x   0x%-13x    0x%-13x\n",
           poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.totalUsedSize,
           status.totalFreeSize, status.maxFreeNodeSize, status.usedNodeNum,
           status.freeNodeNum);
#endif
}

UINT32 LOS_MemFreeNodeShow(VOID *pool)
{
    struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;

    if ((poolInfo == NULL) || ((UINTPTR)pool != (UINTPTR)poolInfo->info.pool)) {
        PRINT_ERR("wrong mem pool addr: %#x, line:%d\n", poolInfo, __LINE__);
        return LOS_NOK;
    }

    struct OsMemFreeNodeHead *node = NULL;
    UINT32 countNum[OS_MEM_FREE_LIST_COUNT] = {0};
    UINT32 index;
    UINT32 intSave;

    MEM_LOCK(poolInfo, intSave);
    for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
        node = poolInfo->freeList[index];
        while (node) {
            node = node->next;
            countNum[index]++;
        }
    }
    MEM_UNLOCK(poolInfo, intSave);

    PRINTK("\n   ************************ left free node number**********************\n");
    for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
        if (countNum[index] == 0) {
            continue;
        }

        PRINTK("free index: %03u, ", index);
        if (index < OS_MEM_SMALL_BUCKET_COUNT) {
            PRINTK("size: [%#x], num: %u\n", (index + 1) << 2, countNum[index]); /* 2: setup is 4. */
        } else {
            UINT32 val = 1 << (((index - OS_MEM_SMALL_BUCKET_COUNT) >> OS_MEM_SLI) + OS_MEM_LARGE_START_BUCKET);
            UINT32 offset = val >> OS_MEM_SLI;
            PRINTK("size: [%#x, %#x], num: %u\n", (offset * ((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI))) + val,
                    ((offset * (((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI)) + 1)) + val - 1), countNum[index]);
        }
    }
    PRINTK("\n   ********************************************************************\n\n");

    return LOS_OK;
}

STATUS_T OsKHeapInit(size_t size)
{
    STATUS_T ret;
    VOID *ptr = NULL;
    /*
     * roundup to MB aligned in order to set kernel attributes. kernel text/code/data attributes
     * should page mapping, remaining region should section mapping. so the boundary should be
     * MB aligned.
     */
    UINTPTR end = ROUNDUP(g_vmBootMemBase + size, MB);
    size = end - g_vmBootMemBase;

    ptr = OsVmBootMemAlloc(size);
    if (!ptr) {
        PRINT_ERR("vmm_kheap_init boot_alloc_mem failed! %d\n", size);
        return -1;
    }

    m_aucSysMem0 = m_aucSysMem1 = ptr;
    ret = LOS_MemInit(m_aucSysMem0, size);
    if (ret != LOS_OK) {
        PRINT_ERR("vmm_kheap_init LOS_MemInit failed!\n");
        g_vmBootMemBase -= size;
        return ret;
    }
#if OS_MEM_EXPAND_ENABLE
    LOS_MemExpandEnable(OS_SYS_MEM_ADDR);
#endif
    return LOS_OK;
}

BOOL OsMemIsHeapNode(const VOID *ptr)
{
    struct OsMemPoolHead *pool = (struct OsMemPoolHead *)m_aucSysMem1;
    struct OsMemNodeHead *firstNode = OS_MEM_FIRST_NODE(pool);
    struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);

    if (OS_MEM_MIDDLE_ADDR(firstNode, ptr, endNode)) {
        return TRUE;
    }

#if OS_MEM_EXPAND_ENABLE
    UINT32 intSave;
    UINT32 size;
    MEM_LOCK(pool, intSave);
    while (OsMemIsLastSentinelNode(endNode) == FALSE) {
        size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
        firstNode = OsMemSentinelNodeGet(endNode);
        endNode = OS_MEM_END_NODE(firstNode, size);
        if (OS_MEM_MIDDLE_ADDR(firstNode, ptr, endNode)) {
            MEM_UNLOCK(pool, intSave);
            return TRUE;
        }
    }
    MEM_UNLOCK(pool, intSave);
#endif
    return FALSE;
}