pthread.c 22.4 KB
Newer Older
W
wenjun 已提交
1
/*
M
mamingshuai 已提交
2 3
 * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
 * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
W
wenjun 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of
 *    conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
 *    of conditions and the following disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used
 *    to endorse or promote products derived from this software without specific prior written
 *    permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "pprivate.h"
#include "pthread.h"
#include "sched.h"

#include "stdio.h"
#include "map_error.h"
#include "los_process_pri.h"
M
mamingshuai 已提交
39
#include "los_sched_pri.h"
W
wenjun 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201


/*
 * Array of pthread control structures. A pthread_t object is
 * "just" an index into this array.
 */
STATIC _pthread_data g_pthreadData[LOSCFG_BASE_CORE_TSK_LIMIT + 1];

/* Count of number of threads that have exited and not been reaped. */
STATIC INT32 g_pthreadsExited = 0;

/* this is to protect the pthread data */
STATIC pthread_mutex_t g_pthreadsDataMutex = PTHREAD_MUTEX_INITIALIZER;

/* pointed to by PTHREAD_CANCELED */
UINTPTR g_pthreadCanceledDummyVar;

/*
 * Private version of pthread_self() that returns a pointer to our internal
 * control structure.
 */
_pthread_data *pthread_get_self_data(void)
{
    UINT32 runningTaskPID = ((LosTaskCB *)(OsCurrTaskGet()))->taskID;
    _pthread_data *data = &g_pthreadData[runningTaskPID];

    return data;
}

_pthread_data *pthread_get_data(pthread_t id)
{
    _pthread_data *data = NULL;

    if (OS_TID_CHECK_INVALID(id)) {
        return NULL;
    }

    data = &g_pthreadData[id];
    /* Check that this is a valid entry */
    if ((data->state == PTHREAD_STATE_FREE) || (data->state == PTHREAD_STATE_EXITED)) {
        return NULL;
    }

    /* Check that the entry matches the id */
    if (data->id != id) {
        return NULL;
    }

    /* Return the pointer */
    return data;
}

/*
 * Check whether there is a cancel pending and if so, whether
 * cancellations are enabled. We do it in this order to reduce the
 * number of tests in the common case - when no cancellations are
 * pending. We make this inline so it can be called directly below for speed
 */
STATIC INT32 CheckForCancel(VOID)
{
    _pthread_data *self = pthread_get_self_data();
    if (self->canceled && (self->cancelstate == PTHREAD_CANCEL_ENABLE)) {
        return 1;
    }
    return 0;
}

STATIC VOID ProcessUnusedStatusTask(_pthread_data *data)
{
    data->state = PTHREAD_STATE_FREE;
    (VOID)memset_s(data, sizeof(_pthread_data), 0, sizeof(_pthread_data));
}

/*
 * This function is called to tidy up and dispose of any threads that have
 * exited. This work must be done from a thread other than the one exiting.
 * Note: this function must be called with pthread_mutex locked.
 */
STATIC VOID PthreadReap(VOID)
{
    UINT32 i;
    _pthread_data *data = NULL;
    /*
     * Loop over the thread table looking for exited threads. The
     * g_pthreadsExited counter springs us out of this once we have
     * found them all (and keeps us out if there are none to do).
     */
    for (i = 0; g_pthreadsExited && (i < g_taskMaxNum); i++) {
        data = &g_pthreadData[i];
        if (data->state == PTHREAD_STATE_EXITED) {
            /* the Huawei LiteOS not delete the dead TCB,so need to delete the TCB */
            (VOID)LOS_TaskDelete(data->task->taskID);
            if (data->task->taskStatus & OS_TASK_STATUS_UNUSED) {
                ProcessUnusedStatusTask(data);
                g_pthreadsExited--;
            }
        }
    }
}

STATIC VOID SetPthreadAttr(const _pthread_data *self, const pthread_attr_t *attr, pthread_attr_t *outAttr)
{
    /*
     * Set use_attr to the set of attributes we are going to
     * actually use. Either those passed in, or the default set.
     */
    if (attr == NULL) {
        (VOID)pthread_attr_init(outAttr);
    } else {
        (VOID)memcpy_s(outAttr, sizeof(pthread_attr_t), attr, sizeof(pthread_attr_t));
    }

    /*
     * If the stack size is not valid, we can assume that it is at
     * least PTHREAD_STACK_MIN bytes.
     */
    if (!outAttr->stacksize_set) {
        outAttr->stacksize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
    }
    if (outAttr->inheritsched == PTHREAD_INHERIT_SCHED) {
        if (self->task == NULL) {
            outAttr->schedparam.sched_priority = ((LosTaskCB *)(OsCurrTaskGet()))->priority;
        } else {
            outAttr->schedpolicy = self->attr.schedpolicy;
            outAttr->schedparam  = self->attr.schedparam;
            outAttr->scope       = self->attr.scope;
        }
    }
}

STATIC VOID SetPthreadDataAttr(const pthread_attr_t *userAttr, const pthread_t threadID,
                               LosTaskCB *taskCB, _pthread_data *created)
{
    created->attr         = *userAttr;
    created->id           = threadID;
    created->task         = taskCB;
    created->state        = (userAttr->detachstate == PTHREAD_CREATE_JOINABLE) ?
                            PTHREAD_STATE_RUNNING : PTHREAD_STATE_DETACHED;
    /* need to confirmation */
    created->cancelstate  = PTHREAD_CANCEL_ENABLE;
    created->canceltype   = PTHREAD_CANCEL_DEFERRED;
    created->cancelbuffer = NULL;
    created->canceled     = 0;
    created->freestack    = 0; /* no use default : 0 */
    created->stackmem     = taskCB->topOfStack;
    created->thread_data  = NULL;
}

STATIC UINT32 InitPthreadData(pthread_t threadID, pthread_attr_t *userAttr,
                              const CHAR name[], size_t len)
{
    errno_t err;
    UINT32 ret = LOS_OK;
    LosTaskCB *taskCB = OS_TCB_FROM_TID(threadID);
    _pthread_data *created = &g_pthreadData[threadID];

    err = strncpy_s(created->name, sizeof(created->name), name, len);
    if (err != EOK) {
        PRINT_ERR("%s: %d, err: %d\n", __FUNCTION__, __LINE__, err);
        return LOS_NOK;
    }
    userAttr->stacksize   = taskCB->stackSize;
202 203
    err = OsSetTaskName(taskCB, created->name, FALSE);
    if (err != LOS_OK) {
W
wenjun 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        PRINT_ERR("%s: %d, err: %d\n", __FUNCTION__, __LINE__, err);
        return LOS_NOK;
    }
#if (LOSCFG_KERNEL_SMP == YES)
    if (userAttr->cpuset.__bits[0] > 0) {
        taskCB->cpuAffiMask = (UINT16)userAttr->cpuset.__bits[0];
    }
#endif

    SetPthreadDataAttr(userAttr, threadID, taskCB, created);
    return ret;
}

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*startRoutine)(void *), void *arg)
{
    pthread_attr_t userAttr;
    UINT32 ret;
222
    CHAR name[PTHREAD_DATA_NAME_MAX] = {0};
W
wenjun 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    STATIC UINT16 pthreadNumber = 1;
    TSK_INIT_PARAM_S taskInitParam = {0};
    UINT32 taskHandle;
    _pthread_data *self = pthread_get_self_data();

    if ((thread == NULL) || (startRoutine == NULL)) {
        return EINVAL;
    }

    SetPthreadAttr(self, attr, &userAttr);

    (VOID)snprintf_s(name, sizeof(name), sizeof(name) - 1, "pth%02d", pthreadNumber);
    pthreadNumber++;

    taskInitParam.pcName       = name;
    taskInitParam.pfnTaskEntry = (TSK_ENTRY_FUNC)startRoutine;
    taskInitParam.auwArgs[0]   = (UINTPTR)arg;
    taskInitParam.usTaskPrio   = (UINT16)userAttr.schedparam.sched_priority;
    taskInitParam.uwStackSize  = userAttr.stacksize;
    if (OsProcessIsUserMode(OsCurrProcessGet())) {
        taskInitParam.processID = OsGetKernelInitProcessID();
    } else {
        taskInitParam.processID = OsCurrProcessGet()->processID;
    }
    if (userAttr.detachstate == PTHREAD_CREATE_DETACHED) {
        taskInitParam.uwResved = LOS_TASK_STATUS_DETACHED;
    } else {
        /* Set the pthread default joinable */
        taskInitParam.uwResved = 0;
    }

    PthreadReap();
    ret = LOS_TaskCreateOnly(&taskHandle, &taskInitParam);
    if (ret == LOS_OK) {
        *thread = (pthread_t)taskHandle;
        ret = InitPthreadData(*thread, &userAttr, name, PTHREAD_DATA_NAME_MAX);
        if (ret != LOS_OK) {
            goto ERROR_OUT_WITH_TASK;
        }
        (VOID)LOS_SetTaskScheduler(taskHandle, SCHED_RR, taskInitParam.usTaskPrio);
    }

    if (ret == LOS_OK) {
        return ENOERR;
    } else {
        goto ERROR_OUT;
    }

ERROR_OUT_WITH_TASK:
    (VOID)LOS_TaskDelete(taskHandle);
ERROR_OUT:
    *thread = (pthread_t)-1;

    return map_errno(ret);
}

void pthread_exit(void *retVal)
{
    _pthread_data *self = pthread_get_self_data();
    UINT32 intSave;

    if (pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, (int *)0) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }

    if (pthread_mutex_lock(&g_pthreadsDataMutex) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }

    self->task->joinRetval = retVal;
    /*
     * If we are already detached, go to EXITED state, otherwise
     * go into JOIN state.
     */
    if (self->state == PTHREAD_STATE_DETACHED) {
        self->state = PTHREAD_STATE_EXITED;
        g_pthreadsExited++;
    } else {
        self->state = PTHREAD_STATE_JOIN;
    }

    if (pthread_mutex_unlock(&g_pthreadsDataMutex) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }
    SCHEDULER_LOCK(intSave);
    /* If the thread is the highest thread,it can't schedule in LOS_SemPost. */
    OsTaskJoinPostUnsafe(self->task);
    if (self->task->taskStatus & OS_TASK_STATUS_RUNNING) {
        OsSchedResched();
    }
    SCHEDULER_UNLOCK(intSave);
}

STATIC INT32 ProcessByJoinState(_pthread_data *joined)
{
    UINT32 intSave;
    INT32 err = 0;
    UINT32 ret;
    switch (joined->state) {
        case PTHREAD_STATE_RUNNING:
            /* The thread is still running, we must wait for it. */
            SCHEDULER_LOCK(intSave);
            ret = OsTaskJoinPendUnsafe(joined->task);
            SCHEDULER_UNLOCK(intSave);
            if (ret != LOS_OK) {
                err = (INT32)ret;
                break;
            }

            joined->state = PTHREAD_STATE_ALRDY_JOIN;
            break;
           /*
            * The thread has become unjoinable while we waited, so we
            * fall through to complain.
            */
        case PTHREAD_STATE_FREE:
        case PTHREAD_STATE_DETACHED:
        case PTHREAD_STATE_EXITED:
            /* None of these may be joined. */
            err = EINVAL;
            break;
        case PTHREAD_STATE_ALRDY_JOIN:
            err = EINVAL;
            break;
        case PTHREAD_STATE_JOIN:
            break;
        default:
            PRINT_ERR("state: %u is not supported\n", (UINT32)joined->state);
            break;
    }
    return err;
}

int pthread_join(pthread_t thread, void **retVal)
{
    INT32 err;
    UINT8 status;
    _pthread_data *self = NULL;
    _pthread_data *joined = NULL;

    /* Check for cancellation first. */
    pthread_testcancel();

    /* Dispose of any dead threads */
    (VOID)pthread_mutex_lock(&g_pthreadsDataMutex);
    PthreadReap();
    (VOID)pthread_mutex_unlock(&g_pthreadsDataMutex);

    self   = pthread_get_self_data();
    joined = pthread_get_data(thread);
    if (joined == NULL) {
        return ESRCH;
    }
    status = joined->state;

    if (joined == self) {
        return EDEADLK;
    }

    err = ProcessByJoinState(joined);
    (VOID)pthread_mutex_lock(&g_pthreadsDataMutex);

    if (!err) {
        /*
         * Here, we know that joinee is a thread that has exited and is
         * ready to be joined.
         */
        if (retVal != NULL) {
            /* Get the retVal */
            *retVal = joined->task->joinRetval;
        }

        /* Set state to exited. */
        joined->state = PTHREAD_STATE_EXITED;
        g_pthreadsExited++;

        /* Dispose of any dead threads */
        PthreadReap();
    } else {
        joined->state = status;
    }

    (VOID)pthread_mutex_unlock(&g_pthreadsDataMutex);
    /* Check for cancellation before returning */
    pthread_testcancel();

    return err;
}

/*
 * Set the detachstate of the thread to "detached". The thread then does not
 * need to be joined and its resources will be freed when it exits.
 */
int pthread_detach(pthread_t thread)
{
    int ret = 0;
    UINT32 intSave;

    _pthread_data *detached = NULL;

    if (pthread_mutex_lock(&g_pthreadsDataMutex) != ENOERR) {
        ret = ESRCH;
    }
    detached = pthread_get_data(thread);
    if (detached == NULL) {
        ret = ESRCH; /* No such thread */
    } else if (detached->state == PTHREAD_STATE_DETACHED) {
        ret = EINVAL; /* Already detached! */
    } else if (detached->state == PTHREAD_STATE_JOIN) {
        detached->state = PTHREAD_STATE_EXITED;
        g_pthreadsExited++;
    } else {
        /* Set state to detached and kick any joinees to make them return. */
        SCHEDULER_LOCK(intSave);
        if (!(detached->task->taskStatus & OS_TASK_STATUS_EXIT)) {
R
rtos-lover 已提交
438
            ret = OsTaskSetDetachUnsafe(detached->task);
W
wenjun 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            if (ret == ESRCH) {
                ret = LOS_OK;
            } else if (ret == LOS_OK) {
                detached->state = PTHREAD_STATE_DETACHED;
            }
        } else {
            detached->state = PTHREAD_STATE_EXITED;
            g_pthreadsExited++;
        }
        SCHEDULER_UNLOCK(intSave);
    }

    /* Dispose of any dead threads */
    PthreadReap();
    if (pthread_mutex_unlock(&g_pthreadsDataMutex) != ENOERR) {
        ret = ESRCH;
    }

    return ret;
}

int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param)
{
    _pthread_data *data = NULL;
    int ret;

    if ((param == NULL) || (param->sched_priority > OS_TASK_PRIORITY_LOWEST)) {
        return EINVAL;
    }

    if (policy != SCHED_RR) {
        return EINVAL;
    }

    /* The parameters seem OK, change the thread. */
    ret = pthread_mutex_lock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    data = pthread_get_data(thread);
    if (data == NULL) {
        ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
        if (ret != ENOERR) {
            return ret;
        }
        return ESRCH;
    }

    /* Only support one policy now */
    data->attr.schedpolicy = SCHED_RR;
    data->attr.schedparam  = *param;

    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }
    (VOID)LOS_TaskPriSet((UINT32)thread, (UINT16)param->sched_priority);

    return ENOERR;
}

int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param)
{
    _pthread_data *data = NULL;
    int ret;

    if ((policy == NULL) || (param == NULL)) {
        return EINVAL;
    }

    ret = pthread_mutex_lock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    data = pthread_get_data(thread);
    if (data == NULL) {
        goto ERR_OUT;
    }

    *policy = data->attr.schedpolicy;
    *param = data->attr.schedparam;

    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    return ret;
ERR_OUT:
    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }
    return ESRCH;
}

/* Call initRoutine just the once per control variable. */
int pthread_once(pthread_once_t *onceControl, void (*initRoutine)(void))
{
    pthread_once_t old;
    int ret;

    if ((onceControl == NULL) || (initRoutine == NULL)) {
        return EINVAL;
    }

    /* Do a test and set on the onceControl object. */
    ret = pthread_mutex_lock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    old = *onceControl;
    *onceControl = 1;

    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }
    /* If the onceControl was zero, call the initRoutine(). */
    if (!old) {
        initRoutine();
    }

    return ENOERR;
}

/* Thread specific data */
int pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
{
    (VOID)key;
    (VOID)destructor;
    PRINT_ERR("[%s] is not support.\n", __FUNCTION__);
    return 0;
}

/* Store the pointer value in the thread-specific data slot addressed by the key. */
int pthread_setspecific(pthread_key_t key, const void *pointer)
{
    (VOID)key;
    (VOID)pointer;
    PRINT_ERR("[%s] is not support.\n", __FUNCTION__);
    return 0;
}

/* Retrieve the pointer value in the thread-specific data slot addressed by the key. */
void *pthread_getspecific(pthread_key_t key)
{
    (VOID)key;
    PRINT_ERR("[%s] is not support.\n", __FUNCTION__);
    return NULL;
}

/*
 * Set cancel state of current thread to ENABLE or DISABLE.
 * Returns old state in *oldState.
 */
int pthread_setcancelstate(int state, int *oldState)
{
    _pthread_data *self = NULL;
    int ret;

    if ((state != PTHREAD_CANCEL_ENABLE) && (state != PTHREAD_CANCEL_DISABLE)) {
        return EINVAL;
    }

    ret = pthread_mutex_lock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    self = pthread_get_self_data();

    if (oldState != NULL) {
        *oldState = self->cancelstate;
    }

    self->cancelstate = (UINT8)state;

    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    return ENOERR;
}

/*
 * Set cancel type of current thread to ASYNCHRONOUS or DEFERRED.
 * Returns old type in *oldType.
 */
int pthread_setcanceltype(int type, int *oldType)
{
    _pthread_data *self = NULL;
    int ret;

    if ((type != PTHREAD_CANCEL_ASYNCHRONOUS) && (type != PTHREAD_CANCEL_DEFERRED)) {
        return EINVAL;
    }

    ret = pthread_mutex_lock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    self = pthread_get_self_data();
    if (oldType != NULL) {
        *oldType = self->canceltype;
    }

    self->canceltype = (UINT8)type;

    ret = pthread_mutex_unlock(&g_pthreadsDataMutex);
    if (ret != ENOERR) {
        return ret;
    }

    return ENOERR;
}

STATIC UINT32 DoPthreadCancel(_pthread_data *data)
{
    UINT32 ret = LOS_OK;
    UINT32 intSave;
    LOS_TaskLock();
    data->canceled = 0;
    if ((data->task->taskStatus & OS_TASK_STATUS_EXIT) || (LOS_TaskSuspend(data->task->taskID) != ENOERR)) {
        ret = LOS_NOK;
        goto OUT;
    }

    if (data->task->taskStatus & OS_TASK_FLAG_PTHREAD_JOIN) {
        SCHEDULER_LOCK(intSave);
        OsTaskJoinPostUnsafe(data->task);
        SCHEDULER_UNLOCK(intSave);
        g_pthreadCanceledDummyVar = (UINTPTR)PTHREAD_CANCELED;
        data->task->joinRetval = (VOID *)g_pthreadCanceledDummyVar;
    } else if (data->state && !(data->task->taskStatus & OS_TASK_STATUS_UNUSED)) {
        data->state = PTHREAD_STATE_EXITED;
        g_pthreadsExited++;
        PthreadReap();
    } else {
        ret = LOS_NOK;
    }
OUT:
    LOS_TaskUnlock();
    return ret;
}

int pthread_cancel(pthread_t thread)
{
    _pthread_data *data = NULL;

    if (pthread_mutex_lock(&g_pthreadsDataMutex) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }

    data = pthread_get_data(thread);
    if (data == NULL) {
        if (pthread_mutex_unlock(&g_pthreadsDataMutex) != ENOERR) {
            PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
        }
        return ESRCH;
    }

    data->canceled = 1;

    if ((data->cancelstate == PTHREAD_CANCEL_ENABLE) &&
        (data->canceltype == PTHREAD_CANCEL_ASYNCHRONOUS)) {
        /*
         * If the thread has cancellation enabled, and it is in
         * asynchronous mode, suspend it and set corresponding thread's status.
         * We also release the thread out of any current wait to make it wake up.
         */
        if (DoPthreadCancel(data) == LOS_NOK) {
            goto ERROR_OUT;
        }
    }

    /*
     * Otherwise the thread has cancellation disabled, in which case
     * it is up to the thread to enable cancellation
     */
    if (pthread_mutex_unlock(&g_pthreadsDataMutex) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }

    return ENOERR;
ERROR_OUT:
    if (pthread_mutex_unlock(&g_pthreadsDataMutex) != ENOERR) {
        PRINT_ERR("%s: %d failed\n", __FUNCTION__, __LINE__);
    }
    return ESRCH;
}

/*
 * Test for a pending cancellation for the current thread and terminate
 * the thread if there is one.
 */
void pthread_testcancel(void)
{
    if (CheckForCancel()) {
        /*
         * If we have cancellation enabled, and there is a cancellation
         * pending, then go ahead and do the deed.
         * Exit now with special retVal. pthread_exit() calls the
         * cancellation handlers implicitly.
         */
        pthread_exit((void *)PTHREAD_CANCELED);
    }
}

/* Get current thread id. */
pthread_t pthread_self(void)
{
    _pthread_data *data = pthread_get_self_data();

    return data->id;
}

/* Compare two thread identifiers. */
int pthread_equal(pthread_t thread1, pthread_t thread2)
{
    return thread1 == thread2;
}

void pthread_cleanup_push_inner(struct pthread_cleanup_buffer *buffer,
                                void (*routine)(void *), void *arg)
{
    (VOID)buffer;
    (VOID)routine;
    (VOID)arg;
    PRINT_ERR("[%s] is not support.\n", __FUNCTION__);
    return;
}

void pthread_cleanup_pop_inner(struct pthread_cleanup_buffer *buffer, int execute)
{
    (VOID)buffer;
    (VOID)execute;
    PRINT_ERR("[%s] is not support.\n", __FUNCTION__);
    return;
}

/*
 * Set the cpu affinity mask for the thread
 */
int pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const cpu_set_t* cpuset)
{
    INT32 ret = sched_setaffinity(thread, cpusetsize, cpuset);
    if (ret == -1) {
        return errno;
    } else {
        return ENOERR;
    }
}

/*
 * Get the cpu affinity mask from the thread
 */
int pthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t* cpuset)
{
    INT32 ret = sched_getaffinity(thread, cpusetsize, cpuset);
    if (ret == -1) {
        return errno;
    } else {
        return ENOERR;
    }
}