hugetlbpage.c 25.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
21 22
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
23
#include <asm/setup.h>
24 25 26
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
27

28 29 30
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
31

B
Becky Bruce 已提交
32
unsigned int HPAGE_SHIFT;
33

B
Becky Bruce 已提交
34 35
/*
 * Tracks gpages after the device tree is scanned and before the
36 37 38 39
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
40
 */
41
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
42 43 44 45 46 47
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 49 50 51
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
52
#endif
53

54 55 56 57
#define hugepd_none(hpd)	((hpd).pd == 0)

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
58
	/* Only called for hugetlbfs pages, hence can ignore THP */
59
	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
60 61
}

62
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63
			   unsigned long address, unsigned pdshift, unsigned pshift)
64
{
B
Becky Bruce 已提交
65 66 67
	struct kmem_cache *cachep;
	pte_t *new;

68
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
69 70 71
	int i;
	int num_hugepd = 1 << (pshift - pdshift);
	cachep = hugepte_cache;
72 73
#else
	cachep = PGT_CACHE(pdshift - pshift);
B
Becky Bruce 已提交
74 75 76
#endif

	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
77

78 79 80
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

81 82 83 84
	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
85
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
86 87 88 89 90 91 92 93 94 95
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		else
96
			/* We use the old format for PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
97 98 99 100 101 102 103 104
			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			hpdp->pd = 0;
		kmem_cache_free(cachep, new);
	}
105 106 107
#else
	if (!hugepd_none(*hpdp))
		kmem_cache_free(cachep, new);
108 109 110 111 112
	else {
#ifdef CONFIG_PPC_BOOK3S_64
		hpdp->pd = (unsigned long)new |
			    (shift_to_mmu_psize(pshift) << 2);
#else
113
		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
114 115
#endif
	}
B
Becky Bruce 已提交
116
#endif
117 118 119 120
	spin_unlock(&mm->page_table_lock);
	return 0;
}

121 122 123 124 125 126 127 128 129 130 131 132
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

183
	return hugepte_offset(*hpdp, addr, pdshift);
184 185 186 187
}

#else

188
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
189
{
190 191 192 193 194 195 196 197 198 199
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
200 201

	if (pshift >= HUGEPD_PGD_SHIFT) {
202 203 204 205
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
206
		if (pshift >= HUGEPD_PUD_SHIFT) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

223
	return hugepte_offset(*hpdp, addr, pdshift);
224
}
225
#endif
226

227
#ifdef CONFIG_PPC_FSL_BOOK3E
228
/* Build list of addresses of gigantic pages.  This function is used in early
229
 * boot before the buddy allocator is setup.
230
 */
B
Becky Bruce 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
254
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
255 256 257 258 259 260 261 262 263 264
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
265
	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
B
Becky Bruce 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

285
static int __init do_gpage_early_setup(char *param, char *val,
286
				       const char *unused, void *arg)
B
Becky Bruce 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
305 306 307 308 309 310 311
			if (npages > MAX_NUMBER_GPAGES) {
				pr_warn("MMU: %lu pages requested for page "
					"size %llu KB, limiting to "
					__stringify(MAX_NUMBER_GPAGES) "\n",
					npages, size / 1024);
				npages = MAX_NUMBER_GPAGES;
			}
B
Becky Bruce 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
334
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
335
			NULL, &do_gpage_early_setup);
B
Becky Bruce 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

356
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
357 358

/* Build list of addresses of gigantic pages.  This function is used in early
359
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
360 361
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
362 363 364 365 366 367 368 369 370 371 372
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

373
/* Moves the gigantic page addresses from the temporary list to the
374 375 376
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
377 378 379 380 381 382 383
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
384
	m->hstate = hstate;
385 386
	return 1;
}
B
Becky Bruce 已提交
387
#endif
388

389
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

417
	batchp = this_cpu_ptr(&hugepd_freelist_cur);
B
Becky Bruce 已提交
418 419 420 421 422

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
423
        put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
437
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
438 439 440
}
#endif

441 442 443
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
444 445
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
446 447
	int i;

448
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
449 450
	unsigned int num_hugepd = 1;

451 452
#ifdef CONFIG_PPC_FSL_BOOK3E
	/* Note: On fsl the hpdp may be the first of several */
B
Becky Bruce 已提交
453
	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
454 455
#else
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
456
#endif
457 458 459 460 461 462 463 464 465 466 467

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
468

B
Becky Bruce 已提交
469 470 471
	for (i = 0; i < num_hugepd; i++, hpdp++)
		hpdp->pd = 0;

472
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
473
	hugepd_free(tlb, hugepte);
474 475
#else
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
B
Becky Bruce 已提交
476
#endif
477 478 479 480
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
481
				   unsigned long floor, unsigned long ceiling)
482 483 484 485 486 487 488
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
489
		pmd = pmd_offset(pud, addr);
490
		next = pmd_addr_end(addr, end);
491
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
492 493 494 495 496
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
497
			continue;
498
		}
499 500 501 502 503 504 505 506 507
#ifdef CONFIG_PPC_FSL_BOOK3E
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
#endif
508 509
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
510
	} while (addr = next, addr != end);
511 512 513 514 515 516 517 518

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
519
	}
520 521
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
522

523 524
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
525
	pmd_free_tlb(tlb, pmd, start);
526
	mm_dec_nr_pmds(tlb->mm);
527 528 529 530 531 532 533 534 535 536 537 538
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
539
		pud = pud_offset(pgd, addr);
540
		next = pud_addr_end(addr, end);
541
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
542 543
			if (pud_none_or_clear_bad(pud))
				continue;
544
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
545
					       ceiling);
546
		} else {
547 548 549 550 551 552 553 554 555
#ifdef CONFIG_PPC_FSL_BOOK3E
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
556 557
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
558
		}
559
	} while (addr = next, addr != end);
560 561 562 563 564 565 566 567 568 569 570 571 572 573

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
574
	pud_free_tlb(tlb, pud, start);
575 576 577 578 579
}

/*
 * This function frees user-level page tables of a process.
 */
580
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
581 582 583 584 585 586 587
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
588 589 590 591 592 593 594 595 596 597
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
598
	 *
599 600 601
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
602 603 604 605
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
606
		pgd = pgd_offset(tlb->mm, addr);
607
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
608 609 610 611
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
612
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
613 614
			/*
			 * Increment next by the size of the huge mapping since
615 616 617
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
618 619 620
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
621 622
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
623
		}
B
Becky Bruce 已提交
624
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
625 626
}

627 628 629 630
/*
 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 * To prevent hugepage split, disable irq.
 */
L
Linus Torvalds 已提交
631 632 633
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
634
	bool is_thp;
635
	pte_t *ptep, pte;
636
	unsigned shift;
637
	unsigned long mask, flags;
638 639 640
	struct page *page = ERR_PTR(-EINVAL);

	local_irq_save(flags);
641
	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
642 643 644
	if (!ptep)
		goto no_page;
	pte = READ_ONCE(*ptep);
645
	/*
646
	 * Verify it is a huge page else bail.
647 648 649
	 * Transparent hugepages are handled by generic code. We can skip them
	 * here.
	 */
650
	if (!shift || is_thp)
651
		goto no_page;
L
Linus Torvalds 已提交
652

653 654 655
	if (!pte_present(pte)) {
		page = NULL;
		goto no_page;
656
	}
657
	mask = (1UL << shift) - 1;
658
	page = pte_page(pte);
659 660
	if (page)
		page += (address & mask) / PAGE_SIZE;
L
Linus Torvalds 已提交
661

662
no_page:
663
	local_irq_restore(flags);
L
Linus Torvalds 已提交
664 665 666 667 668 669 670 671 672 673 674
	return page;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

675 676 677 678 679 680 681 682
struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
683 684 685 686 687 688 689
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

690 691
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
		unsigned long end, int write, struct page **pages, int *nr)
692 693
{
	pte_t *ptep;
694
	unsigned long sz = 1UL << hugepd_shift(hugepd);
D
David Gibson 已提交
695
	unsigned long next;
696 697 698

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
699
		next = hugepte_addr_end(addr, end, sz);
700 701
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
702
	} while (ptep++, addr = next, addr != end);
703 704 705

	return 1;
}
L
Linus Torvalds 已提交
706

707
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
708 709 710 711
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
712 713
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
714

715
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
716
}
717
#endif
L
Linus Torvalds 已提交
718

719 720
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
721
#ifdef CONFIG_PPC_MM_SLICES
722 723 724
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

	return 1UL << mmu_psize_to_shift(psize);
B
Becky Bruce 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
#else
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
#endif
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
738 739
}

740
static int __init add_huge_page_size(unsigned long long size)
741
{
742 743
	int shift = __ffs(size);
	int mmu_psize;
744

745
	/* Check that it is a page size supported by the hardware and
746
	 * that it fits within pagetable and slice limits. */
B
Becky Bruce 已提交
747 748 749 750
#ifdef CONFIG_PPC_FSL_BOOK3E
	if ((size < PAGE_SIZE) || !is_power_of_4(size))
		return -EINVAL;
#else
751 752 753
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
B
Becky Bruce 已提交
754
#endif
755

756 757 758 759 760 761 762 763 764 765 766 767
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
768 769 770 771 772 773 774 775
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

776
	if (add_huge_page_size(size) != 0)
777 778 779 780 781 782
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

783
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		/* Don't treat normal page sizes as huge... */
		if (shift != PAGE_SHIFT)
			if (add_huge_page_size(1ULL << shift) < 0)
				continue;
	}

	/*
	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
	 * size information encoded in them, so align them to allow this
	 */
	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
	if (hugepte_cache == NULL)
		panic("%s: Unable to create kmem cache for hugeptes\n",
		      __func__);

	/* Default hpage size = 4M */
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
	else
		panic("%s: Unable to set default huge page size\n", __func__);


	return 0;
}
#else
823 824
static int __init hugetlbpage_init(void)
{
825
	int psize;
826

827
	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
828
		return -ENODEV;
829

830 831 832
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
833

834 835
		if (!mmu_psize_defs[psize].shift)
			continue;
836

837 838 839 840 841 842 843 844 845 846 847
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
848 849 850 851 852 853 854 855 856 857
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
		if (pdshift != shift) {
			pgtable_cache_add(pdshift - shift, NULL);
			if (!PGT_CACHE(pdshift - shift))
				panic("hugetlbpage_init(): could not create "
				      "pgtable cache for %d bit pagesize\n", shift);
		}
858
	}
859

860 861 862 863 864 865 866 867
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;

868 869
	return 0;
}
B
Becky Bruce 已提交
870
#endif
871
arch_initcall(hugetlbpage_init);
872 873 874 875

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
876
	void *start;
877 878 879

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
880 881 882 883
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
884
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
885
			__flush_dcache_icache(start);
886
			kunmap_atomic(start);
B
Becky Bruce 已提交
887 888
		}
	}
889
}
890 891 892 893 894 895 896

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
A
Aneesh Kumar K.V 已提交
897 898
 * (3) leaf pte for huge page _PAGE_PTE set
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
899 900 901
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
902 903
 * This function need to be called with interrupts disabled. We use this variant
 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
904
 */
905

906
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
907
				   bool *is_thp, unsigned *shift)
908
{
909 910 911
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
912 913 914 915 916 917 918
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

919 920 921
	if (is_thp)
		*is_thp = false;

922
	pgdp = pgdir + pgd_index(ea);
923
	pgd  = READ_ONCE(*pgdp);
924
	/*
925 926 927 928
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
929
	 */
930
	if (pgd_none(pgd))
931
		return NULL;
932 933
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
934
		goto out;
935
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
936
		hpdp = (hugepd_t *)&pgd;
937
	else {
938 939 940 941 942
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
943
		pdshift = PUD_SHIFT;
944
		pudp = pud_offset(&pgd, ea);
945
		pud  = READ_ONCE(*pudp);
946

947
		if (pud_none(pud))
948
			return NULL;
949 950
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
951
			goto out;
952
		} else if (is_hugepd(__hugepd(pud_val(pud))))
953
			hpdp = (hugepd_t *)&pud;
954
		else {
955
			pdshift = PMD_SHIFT;
956
			pmdp = pmd_offset(&pud, ea);
957
			pmd  = READ_ONCE(*pmdp);
958 959 960 961
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 *
962 963 964
			 * We don't worry about pmd_trans_splitting here, The
			 * caller if it needs to handle the splitting case
			 * should check for that.
965
			 */
966
			if (pmd_none(pmd))
967
				return NULL;
968

969 970 971 972 973 974 975 976
			if (pmd_trans_huge(pmd)) {
				if (is_thp)
					*is_thp = true;
				ret_pte = (pte_t *) pmdp;
				goto out;
			}

			if (pmd_huge(pmd)) {
977
				ret_pte = (pte_t *) pmdp;
978
				goto out;
979
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
980
				hpdp = (hugepd_t *)&pmd;
981
			else
982
				return pte_offset_kernel(&pmd, ea);
983 984 985 986 987
		}
	}
	if (!hpdp)
		return NULL;

988
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
989 990 991 992 993 994
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
995
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
996 997 998 999 1000 1001

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
1002
	struct page *head, *page;
1003 1004 1005 1006 1007 1008 1009
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

1010
	pte = READ_ONCE(*ptep);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	mask = _PAGE_PRESENT | _PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	return 1;
}