hugetlbpage.c 16.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
25
#include <asm/spu.h>
L
Linus Torvalds 已提交
26

27 28 29
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
30

31 32
#define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
#define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 34 35 36 37 38
#define MAX_NUMBER_GPAGES	1024

/* Tracks the 16G pages after the device tree is scanned and before the
 * huge_boot_pages list is ready.  */
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
39

40 41 42
unsigned int hugepte_shift;
#define PTRS_PER_HUGEPTE	(1 << hugepte_shift)
#define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << hugepte_shift)
43

44
#define HUGEPD_SHIFT		(HPAGE_SHIFT + hugepte_shift)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT)
#define HUGEPD_MASK		(~(HUGEPD_SIZE-1))

#define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM])

/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 * will choke on pointers to hugepte tables, which is handy for
 * catching screwups early. */
#define HUGEPD_OK	0x1

typedef struct { unsigned long pd; } hugepd_t;

#define hugepd_none(hpd)	((hpd).pd == 0)

static inline pte_t *hugepd_page(hugepd_t hpd)
{
	BUG_ON(!(hpd.pd & HUGEPD_OK));
	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
}

static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
{
	unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
	pte_t *dir = hugepd_page(*hpdp);

	return dir + idx;
}

static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
			   unsigned long address)
{
	pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
				      GFP_KERNEL|__GFP_REPEAT);

	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
	if (!hugepd_none(*hpdp))
		kmem_cache_free(huge_pgtable_cache, new);
	else
		hpdp->pd = (unsigned long)new | HUGEPD_OK;
	spin_unlock(&mm->page_table_lock);
	return 0;
}

91 92 93 94 95 96 97 98
/* Base page size affects how we walk hugetlb page tables */
#ifdef CONFIG_PPC_64K_PAGES
#define hpmd_offset(pud, addr)		pmd_offset(pud, addr)
#define hpmd_alloc(mm, pud, addr)	pmd_alloc(mm, pud, addr)
#else
static inline
pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
{
99
	if (HPAGE_SHIFT == PAGE_SHIFT_64K)
100 101 102 103 104 105 106
		return pmd_offset(pud, addr);
	else
		return (pmd_t *) pud;
}
static inline
pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
{
107
	if (HPAGE_SHIFT == PAGE_SHIFT_64K)
108 109 110 111 112 113
		return pmd_alloc(mm, pud, addr);
	else
		return (pmd_t *) pud;
}
#endif

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(unsigned long addr, unsigned long page_size,
	unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.  */
int alloc_bootmem_huge_page(struct hstate *h)
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}


145 146
/* Modelled after find_linux_pte() */
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
L
Linus Torvalds 已提交
147
{
148 149
	pgd_t *pg;
	pud_t *pu;
150
	pmd_t *pm;
L
Linus Torvalds 已提交
151

152
	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
L
Linus Torvalds 已提交
153

154 155 156 157 158 159
	addr &= HPAGE_MASK;

	pg = pgd_offset(mm, addr);
	if (!pgd_none(*pg)) {
		pu = pud_offset(pg, addr);
		if (!pud_none(*pu)) {
160
			pm = hpmd_offset(pu, addr);
161 162
			if (!pmd_none(*pm))
				return hugepte_offset((hugepd_t *)pm, addr);
163 164
		}
	}
L
Linus Torvalds 已提交
165

166
	return NULL;
L
Linus Torvalds 已提交
167 168
}

169 170
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
L
Linus Torvalds 已提交
171
{
172 173
	pgd_t *pg;
	pud_t *pu;
174
	pmd_t *pm;
175
	hugepd_t *hpdp = NULL;
L
Linus Torvalds 已提交
176

177
	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
L
Linus Torvalds 已提交
178

179
	addr &= HPAGE_MASK;
L
Linus Torvalds 已提交
180

181 182
	pg = pgd_offset(mm, addr);
	pu = pud_alloc(mm, pg, addr);
L
Linus Torvalds 已提交
183

184
	if (pu) {
185
		pm = hpmd_alloc(mm, pu, addr);
186 187 188 189 190 191 192 193 194 195 196 197 198
		if (pm)
			hpdp = (hugepd_t *)pm;
	}

	if (! hpdp)
		return NULL;

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
		return NULL;

	return hugepte_offset(hpdp, addr);
}

199 200 201 202 203
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

204 205 206 207 208 209 210
static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
{
	pte_t *hugepte = hugepd_page(*hpdp);

	hpdp->pd = 0;
	tlb->need_flush = 1;
	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
A
Adam Litke 已提交
211
						 PGF_CACHENUM_MASK));
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
		free_hugepte_range(tlb, (hugepd_t *)pmd);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
238
	}
239 240
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd);
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
#ifdef CONFIG_PPC_64K_PAGES
		if (pud_none_or_clear_bad(pud))
			continue;
		hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
#else
264
		if (HPAGE_SHIFT == PAGE_SHIFT_64K) {
265 266 267 268 269 270 271 272
			if (pud_none_or_clear_bad(pud))
				continue;
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
		} else {
			if (pud_none(*pud))
				continue;
			free_hugepte_range(tlb, (hugepd_t *)pud);
		}
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
#endif
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
297
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long start;

	/*
	 * Comments below take from the normal free_pgd_range().  They
	 * apply here too.  The tests against HUGEPD_MASK below are
	 * essential, because we *don't* test for this at the bottom
	 * level.  Without them we'll attempt to free a hugepte table
	 * when we unmap just part of it, even if there are other
	 * active mappings using it.
	 *
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing HUGEPD* at this top level?  Because
	 * often there will be no work to do at all, and we'd prefer
	 * not to go all the way down to the bottom just to discover
	 * that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we
	 * must be careful to reject "the opposite 0" before it
	 * confuses the subsequent tests.  But what about where end is
	 * brought down by HUGEPD_SIZE below? no, end can't go down to
	 * 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */

	addr &= HUGEPD_MASK;
	if (addr < floor) {
		addr += HUGEPD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= HUGEPD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= HUGEPD_SIZE;
	if (addr > end - 1)
		return;

	start = addr;
357
	pgd = pgd_offset(tlb->mm, addr);
358
	do {
359
		BUG_ON(get_slice_psize(tlb->mm, addr) != mmu_huge_psize);
360 361 362
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
363
		hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
364
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
365 366
}

367 368 369 370
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
		     pte_t *ptep, pte_t pte)
{
	if (pte_present(*ptep)) {
371
		/* We open-code pte_clear because we need to pass the right
372 373 374
		 * argument to hpte_need_flush (huge / !huge). Might not be
		 * necessary anymore if we make hpte_need_flush() get the
		 * page size from the slices
375
		 */
376
		pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
377
	}
378
	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
L
Linus Torvalds 已提交
379 380
}

381 382
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep)
L
Linus Torvalds 已提交
383
{
384
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
385
	return __pte(old);
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;

394
	if (get_slice_psize(mm, address) != mmu_huge_psize)
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
		return ERR_PTR(-EINVAL);

	ptep = huge_pte_offset(mm, address);
	page = pte_page(*ptep);
	if (page)
		page += (address % HPAGE_SIZE) / PAGE_SIZE;

	return page;
}

int pmd_huge(pmd_t pmd)
{
	return 0;
}

A
Andi Kleen 已提交
410 411 412 413 414
int pud_huge(pud_t pud)
{
	return 0;
}

L
Linus Torvalds 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}


unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
428 429
	return slice_get_unmapped_area(addr, len, flags,
				       mmu_huge_psize, 1, 0);
L
Linus Torvalds 已提交
430 431
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Called by asm hashtable.S for doing lazy icache flush
 */
static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
						  pte_t pte, int trap)
{
	struct page *page;
	int i;

	if (!pfn_valid(pte_pfn(pte)))
		return rflags;

	page = pte_page(pte);

	/* page is dirty */
	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
		if (trap == 0x400) {
			for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
				__flush_dcache_icache(page_address(page+i));
			set_bit(PG_arch_1, &page->flags);
		} else {
			rflags |= HPTE_R_N;
		}
	}
	return rflags;
}

L
Linus Torvalds 已提交
459
int hash_huge_page(struct mm_struct *mm, unsigned long access,
460 461
		   unsigned long ea, unsigned long vsid, int local,
		   unsigned long trap)
L
Linus Torvalds 已提交
462 463
{
	pte_t *ptep;
464 465
	unsigned long old_pte, new_pte;
	unsigned long va, rflags, pa;
L
Linus Torvalds 已提交
466 467
	long slot;
	int err = 1;
P
Paul Mackerras 已提交
468
	int ssize = user_segment_size(ea);
L
Linus Torvalds 已提交
469 470 471 472

	ptep = huge_pte_offset(mm, ea);

	/* Search the Linux page table for a match with va */
P
Paul Mackerras 已提交
473
	va = hpt_va(ea, vsid, ssize);
L
Linus Torvalds 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	/*
	 * If no pte found or not present, send the problem up to
	 * do_page_fault
	 */
	if (unlikely(!ptep || pte_none(*ptep)))
		goto out;

	/* 
	 * Check the user's access rights to the page.  If access should be
	 * prevented then send the problem up to do_page_fault.
	 */
	if (unlikely(access & ~pte_val(*ptep)))
		goto out;
	/*
	 * At this point, we have a pte (old_pte) which can be used to build
	 * or update an HPTE. There are 2 cases:
	 *
	 * 1. There is a valid (present) pte with no associated HPTE (this is 
	 *	the most common case)
	 * 2. There is a valid (present) pte with an associated HPTE. The
	 *	current values of the pp bits in the HPTE prevent access
	 *	because we are doing software DIRTY bit management and the
	 *	page is currently not DIRTY. 
	 */


501 502 503 504
	do {
		old_pte = pte_val(*ptep);
		if (old_pte & _PAGE_BUSY)
			goto out;
505
		new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
506 507 508 509
	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
					 old_pte, new_pte));

	rflags = 0x2 | (!(new_pte & _PAGE_RW));
L
Linus Torvalds 已提交
510
 	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
511
	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
512 513 514 515 516
	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		/* No CPU has hugepages but lacks no execute, so we
		 * don't need to worry about that case */
		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
						       trap);
L
Linus Torvalds 已提交
517 518

	/* Check if pte already has an hpte (case 2) */
519
	if (unlikely(old_pte & _PAGE_HASHPTE)) {
L
Linus Torvalds 已提交
520 521 522
		/* There MIGHT be an HPTE for this pte */
		unsigned long hash, slot;

P
Paul Mackerras 已提交
523
		hash = hpt_hash(va, HPAGE_SHIFT, ssize);
524
		if (old_pte & _PAGE_F_SECOND)
L
Linus Torvalds 已提交
525 526
			hash = ~hash;
		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
527
		slot += (old_pte & _PAGE_F_GIX) >> 12;
L
Linus Torvalds 已提交
528

529
		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
P
Paul Mackerras 已提交
530
					 ssize, local) == -1)
531
			old_pte &= ~_PAGE_HPTEFLAGS;
L
Linus Torvalds 已提交
532 533
	}

534
	if (likely(!(old_pte & _PAGE_HASHPTE))) {
P
Paul Mackerras 已提交
535
		unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
L
Linus Torvalds 已提交
536 537
		unsigned long hpte_group;

538
		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
L
Linus Torvalds 已提交
539 540 541 542 543

repeat:
		hpte_group = ((hash & htab_hash_mask) *
			      HPTES_PER_GROUP) & ~0x7UL;

544
		/* clear HPTE slot informations in new PTE */
545 546 547
#ifdef CONFIG_PPC_64K_PAGES
		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
#else
548
		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
549
#endif
L
Linus Torvalds 已提交
550
		/* Add in WIMG bits */
551 552
		rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
				      _PAGE_COHERENT | _PAGE_GUARDED));
L
Linus Torvalds 已提交
553

554 555
		/* Insert into the hash table, primary slot */
		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
P
Paul Mackerras 已提交
556
					  mmu_huge_psize, ssize);
L
Linus Torvalds 已提交
557 558 559 560 561

		/* Primary is full, try the secondary */
		if (unlikely(slot == -1)) {
			hpte_group = ((~hash & htab_hash_mask) *
				      HPTES_PER_GROUP) & ~0x7UL; 
562
			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
563
						  HPTE_V_SECONDARY,
P
Paul Mackerras 已提交
564
						  mmu_huge_psize, ssize);
L
Linus Torvalds 已提交
565 566
			if (slot == -1) {
				if (mftb() & 0x1)
567 568
					hpte_group = ((hash & htab_hash_mask) *
						      HPTES_PER_GROUP)&~0x7UL;
L
Linus Torvalds 已提交
569 570 571 572 573 574 575 576 577

				ppc_md.hpte_remove(hpte_group);
				goto repeat;
                        }
		}

		if (unlikely(slot == -2))
			panic("hash_huge_page: pte_insert failed\n");

I
Ishizaki Kou 已提交
578
		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
L
Linus Torvalds 已提交
579 580
	}

581
	/*
H
Hugh Dickins 已提交
582
	 * No need to use ldarx/stdcx here
583 584 585
	 */
	*ptep = __pte(new_pte & ~_PAGE_BUSY);

L
Linus Torvalds 已提交
586 587 588 589 590
	err = 0;

 out:
	return err;
}
591

592 593 594 595
void set_huge_psize(int psize)
{
	/* Check that it is a page size supported by the hardware and
	 * that it fits within pagetable limits. */
596 597
	if (mmu_psize_defs[psize].shift &&
		mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
598
		(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
599 600 601 602 603 604 605
		 mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
		 mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
		/* Return if huge page size is the same as the
		 * base page size. */
		if (mmu_psize_defs[psize].shift == PAGE_SHIFT)
			return;

606 607 608
		HPAGE_SHIFT = mmu_psize_defs[psize].shift;
		mmu_huge_psize = psize;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		switch (HPAGE_SHIFT) {
		case PAGE_SHIFT_64K:
		    /* We only allow 64k hpages with 4k base page,
		     * which was checked above, and always put them
		     * at the PMD */
		    hugepte_shift = PMD_SHIFT;
		    break;
		case PAGE_SHIFT_16M:
		    /* 16M pages can be at two different levels
		     * of pagestables based on base page size */
		    if (PAGE_SHIFT == PAGE_SHIFT_64K)
			    hugepte_shift = PMD_SHIFT;
		    else /* 4k base page */
			    hugepte_shift = PUD_SHIFT;
		    break;
		case PAGE_SHIFT_16G:
		    /* 16G pages are always at PGD level */
		    hugepte_shift = PGDIR_SHIFT;
		    break;
		}
		hugepte_shift -= HPAGE_SHIFT;
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	} else
		HPAGE_SHIFT = 0;
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;
	int mmu_psize = -1;
	int shift;

	size = memparse(str, &str);

	shift = __ffs(size);
	switch (shift) {
#ifndef CONFIG_PPC_64K_PAGES
645
	case PAGE_SHIFT_64K:
646 647 648
		mmu_psize = MMU_PAGE_64K;
		break;
#endif
649
	case PAGE_SHIFT_16M:
650 651
		mmu_psize = MMU_PAGE_16M;
		break;
652 653 654
	case PAGE_SHIFT_16G:
		mmu_psize = MMU_PAGE_16G;
		break;
655 656
	}

657
	if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift) {
658
		set_huge_psize(mmu_psize);
659 660
		hugetlb_add_hstate(shift - PAGE_SHIFT);
	}
661 662 663 664 665 666 667
	else
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

668
static void zero_ctor(struct kmem_cache *cache, void *addr)
669 670 671 672 673 674 675 676 677 678 679 680
{
	memset(addr, 0, kmem_cache_size(cache));
}

static int __init hugetlbpage_init(void)
{
	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
		return -ENODEV;

	huge_pgtable_cache = kmem_cache_create("hugepte_cache",
					       HUGEPTE_TABLE_SIZE,
					       HUGEPTE_TABLE_SIZE,
681
					       0,
682
					       zero_ctor);
683 684 685 686 687 688 689
	if (! huge_pgtable_cache)
		panic("hugetlbpage_init(): could not create hugepte cache\n");

	return 0;
}

module_init(hugetlbpage_init);