tick-sched.c 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24

25 26
#include <asm/irq_regs.h>

27 28 29 30 31
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
32
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 34

/*
35
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
36 37 38
 */
static ktime_t last_jiffies_update;

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49 50 51
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

52
	/*
53
	 * Do a quick check without holding jiffies_lock:
54 55 56 57 58
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

59 60
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
79 80 81

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82
	}
83
	write_sequnlock(&jiffies_lock);
84 85 86 87 88 89 90 91 92
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

93
	write_seqlock(&jiffies_lock);
94 95 96 97
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
98
	write_sequnlock(&jiffies_lock);
99 100 101
	return period;
}

102 103 104 105 106

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

107
#ifdef CONFIG_NO_HZ_COMMON
108 109 110 111 112
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
113
	 * jiffies_lock.
114
	 */
115
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
116
	    && !tick_nohz_full_cpu(cpu))
117 118 119 120 121 122 123 124
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

125 126
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
127
#ifdef CONFIG_NO_HZ_COMMON
128 129 130 131 132 133 134 135 136 137 138 139 140
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
141
#endif
142 143 144 145
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

146 147 148
#ifdef CONFIG_NO_HZ_FULL
static cpumask_var_t nohz_full_mask;
bool have_nohz_full_mask;
149

150
int tick_nohz_full_cpu(int cpu)
151
{
152
	if (!have_nohz_full_mask)
153 154
		return 0;

155
	return cpumask_test_cpu(cpu, nohz_full_mask);
156 157 158
}

/* Parse the boot-time nohz CPU list from the kernel parameters. */
159
static int __init tick_nohz_full_setup(char *str)
160
{
161 162 163
	alloc_bootmem_cpumask_var(&nohz_full_mask);
	if (cpulist_parse(str, nohz_full_mask) < 0)
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
164
	else
165
		have_nohz_full_mask = true;
166 167
	return 1;
}
168
__setup("nohz_full=", tick_nohz_full_setup);
169

170 171 172 173 174 175 176 177 178 179 180 181
static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
182
		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
183 184 185 186 187 188
			return -EINVAL;
		break;
	}
	return NOTIFY_OK;
}

189 190 191 192 193
/*
 * Worst case string length in chunks of CPU range seems 2 steps
 * separations: 0,2,4,6,...
 * This is NR_CPUS + sizeof('\0')
 */
194
static char __initdata nohz_full_buf[NR_CPUS + 1];
195

196
static int __init init_tick_nohz_full(void)
197 198 199 200
{
	cpumask_var_t online_nohz;
	int cpu;

201
	if (!have_nohz_full_mask)
202 203
		return 0;

204 205
	cpu_notifier(tick_nohz_cpu_down_callback, 0);

206
	if (!zalloc_cpumask_var(&online_nohz, GFP_KERNEL)) {
207
		pr_warning("NO_HZ: Not enough memory to check full nohz mask\n");
208 209 210 211 212 213 214 215 216 217
		return -ENOMEM;
	}

	/*
	 * CPUs can probably not be concurrently offlined on initcall time.
	 * But we are paranoid, aren't we?
	 */
	get_online_cpus();

	/* Ensure we keep a CPU outside the dynticks range for timekeeping */
218
	cpumask_and(online_nohz, cpu_online_mask, nohz_full_mask);
219 220
	if (cpumask_equal(online_nohz, cpu_online_mask)) {
		pr_warning("NO_HZ: Must keep at least one online CPU "
221
			   "out of nohz_full range\n");
222 223 224 225 226 227
		/*
		 * We know the current CPU doesn't have its tick stopped.
		 * Let's use it for the timekeeping duty.
		 */
		preempt_disable();
		cpu = smp_processor_id();
228 229
		pr_warning("NO_HZ: Clearing %d from nohz_full range\n", cpu);
		cpumask_clear_cpu(cpu, nohz_full_mask);
230
		preempt_enable();
231 232 233 234
	}
	put_online_cpus();
	free_cpumask_var(online_nohz);

235 236
	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
237

238 239
	return 0;
}
240
core_initcall(init_tick_nohz_full);
241
#else
242
#define have_nohz_full_mask (0)
243 244
#endif

245 246 247
/*
 * NOHZ - aka dynamic tick functionality
 */
248
#ifdef CONFIG_NO_HZ_COMMON
249 250 251
/*
 * NO HZ enabled ?
 */
252
int tick_nohz_enabled __read_mostly  = 1;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
280
static void tick_nohz_update_jiffies(ktime_t now)
281 282 283 284 285
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

286
	ts->idle_waketime = now;
287 288 289 290

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
291 292

	touch_softlockup_watchdog();
293 294
}

295 296 297
/*
 * Updates the per cpu time idle statistics counters
 */
298
static void
299
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
300
{
301
	ktime_t delta;
302

303 304
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
305
		if (nr_iowait_cpu(cpu) > 0)
306
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
307 308
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
309
		ts->idle_entrytime = now;
310
	}
311

312
	if (last_update_time)
313 314
		*last_update_time = ktime_to_us(now);

315 316 317 318 319 320
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

321
	update_ts_time_stats(cpu, ts, now, NULL);
322
	ts->idle_active = 0;
323

324
	sched_clock_idle_wakeup_event(0);
325 326
}

327
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
328
{
329
	ktime_t now = ktime_get();
330

331 332
	ts->idle_entrytime = now;
	ts->idle_active = 1;
333
	sched_clock_idle_sleep_event();
334 335 336
	return now;
}

337 338 339
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
340 341
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
342 343
 *
 * Return the cummulative idle time (since boot) for a given
344
 * CPU, in microseconds.
345 346 347 348 349 350
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
351 352 353
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
354
	ktime_t now, idle;
355

356 357 358
	if (!tick_nohz_enabled)
		return -1;

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
374

375
}
376
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
377

378
/**
379 380
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
381 382
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
383 384 385 386 387 388 389 390 391 392 393 394
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
395
	ktime_t now, iowait;
396 397 398 399

	if (!tick_nohz_enabled)
		return -1;

400 401 402 403 404 405 406
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
407

408 409 410 411 412
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
413

414
	return ktime_to_us(iowait);
415 416 417
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

418 419
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
420
{
421
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
422
	ktime_t last_update, expires, ret = { .tv64 = 0 };
423
	unsigned long rcu_delta_jiffies;
424
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
425
	u64 time_delta;
426 427 428

	/* Read jiffies and the time when jiffies were updated last */
	do {
429
		seq = read_seqbegin(&jiffies_lock);
430 431
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
432
		time_delta = timekeeping_max_deferment();
433
	} while (read_seqretry(&jiffies_lock, seq));
434

435
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
436
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
437
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
438
		delta_jiffies = 1;
439 440 441 442
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
443 444 445 446
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
447
	}
448 449 450 451
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
452
	if (!ts->tick_stopped && delta_jiffies == 1)
453 454 455 456 457
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

458 459 460 461 462 463
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
464 465 466 467 468 469
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
470
		 */
T
Thomas Gleixner 已提交
471
		if (cpu == tick_do_timer_cpu) {
472
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
473 474 475 476 477 478 479 480
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

481
		/*
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
499

T
Thomas Gleixner 已提交
500 501 502 503
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
504 505 506 507 508

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

509 510
		ret = expires;

511 512 513 514 515 516 517 518
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
519
			nohz_balance_enter_idle(cpu);
520
			calc_load_enter_idle();
521

522
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
523 524
			ts->tick_stopped = 1;
		}
525

526
		/*
527 528
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
529
		 */
530
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
531 532 533 534 535
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

536 537
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
538
				      HRTIMER_MODE_ABS_PINNED);
539 540 541
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
542
		} else if (!tick_program_event(expires, 0))
543 544 545 546 547 548 549 550 551 552 553 554
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
555
	ts->sleep_length = ktime_sub(dev->next_event, now);
556 557

	return ret;
558 559
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

583 584
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
585 586 587 588 589 590 591
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		return false;
	}

592
	if (have_nohz_full_mask) {
593 594 595 596 597 598 599 600 601 602 603 604 605 606
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

607 608 609
	return true;
}

610 611
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
612
	ktime_t now, expires;
613
	int cpu = smp_processor_id();
614

615
	now = tick_nohz_start_idle(cpu, ts);
616

617 618 619 620
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
621 622 623 624 625 626

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
627 628 629 630

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
631 632 633 634 635 636 637
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
638
 *
639
 * The arch is responsible of calling:
640 641 642 643
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
644
 */
645
void tick_nohz_idle_enter(void)
646 647 648
{
	struct tick_sched *ts;

649 650
	WARN_ON_ONCE(irqs_disabled());

651 652 653 654 655 656 657 658
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

659 660
	local_irq_disable();

661 662 663 664 665 666 667
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
668
	__tick_nohz_idle_enter(ts);
669 670

	local_irq_enable();
671
}
672
EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

689 690
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
691
	__tick_nohz_idle_enter(ts);
692 693
}

694 695 696 697 698 699 700 701 702 703 704 705
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

706 707 708
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
709
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
710 711 712 713 714 715

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
716
			hrtimer_start_expires(&ts->sched_timer,
717
					      HRTIMER_MODE_ABS_PINNED);
718 719 720 721
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
722 723
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
724 725
				break;
		}
726
		/* Reread time and update jiffies */
727
		now = ktime_get();
728
		tick_do_update_jiffies64(now);
729 730 731
	}
}

732
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
733 734 735
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
736
	update_cpu_load_nohz();
737

738
	calc_load_exit_idle();
739 740 741 742 743 744 745 746 747 748 749 750
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
751
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
752
	unsigned long ticks;
753 754 755

	if (vtime_accounting_enabled())
		return;
756 757 758 759 760 761 762 763 764
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
765 766 767
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
768 769
}

770
/**
771
 * tick_nohz_idle_exit - restart the idle tick from the idle task
772 773
 *
 * Restart the idle tick when the CPU is woken up from idle
774 775
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
776
 */
777
void tick_nohz_idle_exit(void)
778 779 780
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
781
	ktime_t now;
782

783
	local_irq_disable();
784

785 786 787 788
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

789 790
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
791
	if (ts->idle_active || ts->tick_stopped)
792 793 794 795
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
796

797
	if (ts->tick_stopped) {
798
		tick_nohz_restart_sched_tick(ts, now);
799
		tick_nohz_account_idle_ticks(ts);
800
	}
801 802 803

	local_irq_enable();
}
804
EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
805 806 807 808

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
809
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
810 811 812 813 814 815 816 817 818 819 820 821 822
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

823
	tick_sched_do_timer(now);
824
	tick_sched_handle(ts, regs);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
860
		hrtimer_set_expires(&ts->sched_timer, next);
861 862 863 864 865 866 867
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

868 869 870 871 872 873 874 875 876 877 878
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
879
static void tick_nohz_kick_tick(int cpu, ktime_t now)
880
{
881 882 883
#if 0
	/* Switch back to 2.6.27 behaviour */

884
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
885
	ktime_t delta;
886

887 888 889 890
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
891
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
892 893 894 895
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
896
#endif
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

915 916 917
#else

static inline void tick_nohz_switch_to_nohz(void) { }
918
static inline void tick_check_nohz(int cpu) { }
919

920
#endif /* CONFIG_NO_HZ_COMMON */
921

922 923 924 925 926
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
927
	tick_check_oneshot_broadcast(cpu);
928
	tick_check_nohz(cpu);
929 930
}

931 932 933 934 935
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
936
 * We rearm the timer until we get disabled by the idle code.
937
 * Called with interrupts disabled.
938 939 940 941 942 943 944
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
945

946
	tick_sched_do_timer(now);
947 948 949 950 951

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
952 953
	if (regs)
		tick_sched_handle(ts, regs);
954 955 956 957 958 959

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
960 961
static int sched_skew_tick;

962 963 964 965 966 967 968 969
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

970 971 972 973 974 975 976 977 978 979 980 981 982 983
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

984
	/* Get the next period (per cpu) */
985
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
986

987
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
988 989 990 991 992 993 994
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

995 996
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
997 998
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
999 1000 1001 1002 1003 1004
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1005
#ifdef CONFIG_NO_HZ_COMMON
1006
	if (tick_nohz_enabled)
1007 1008 1009
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
1010
#endif /* HIGH_RES_TIMERS */
1011

1012
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1013 1014 1015 1016
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1017
# ifdef CONFIG_HIGH_RES_TIMERS
1018 1019
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1020
# endif
1021

1022 1023
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
1024
#endif
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1065
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1066 1067 1068 1069 1070 1071 1072 1073
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}