tick-sched.c 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
136
static void tick_nohz_update_jiffies(ktime_t now)
137 138 139 140 141
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

142
	ts->idle_waketime = now;
143 144 145 146

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
147 148

	touch_softlockup_watchdog();
149 150
}

151 152 153
/*
 * Updates the per cpu time idle statistics counters
 */
154
static void
155
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156
{
157
	ktime_t delta;
158

159 160
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
161
		if (nr_iowait_cpu(cpu) > 0)
162
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 164
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165
		ts->idle_entrytime = now;
166
	}
167

168
	if (last_update_time)
169 170
		*last_update_time = ktime_to_us(now);

171 172 173 174 175 176
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

177
	update_ts_time_stats(cpu, ts, now, NULL);
178
	ts->idle_active = 0;
179

180
	sched_clock_idle_wakeup_event(0);
181 182
}

183
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184
{
185
	ktime_t now = ktime_get();
186

187 188
	ts->idle_entrytime = now;
	ts->idle_active = 1;
189
	sched_clock_idle_sleep_event();
190 191 192
	return now;
}

193 194 195
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
196 197
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
198 199
 *
 * Return the cummulative idle time (since boot) for a given
200
 * CPU, in microseconds.
201 202 203 204 205 206
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
207 208 209
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210
	ktime_t now, idle;
211

212 213 214
	if (!tick_nohz_enabled)
		return -1;

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
230

231
}
232
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233

234
/**
235 236
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
237 238
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
239 240 241 242 243 244 245 246 247 248 249 250
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251
	ktime_t now, iowait;
252 253 254 255

	if (!tick_nohz_enabled)
		return -1;

256 257 258 259 260 261 262
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263

264 265 266 267 268
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
269

270
	return ktime_to_us(iowait);
271 272 273
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

274
static void tick_nohz_stop_sched_tick(struct tick_sched *ts, ktime_t now)
275
{
276
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277
	ktime_t last_update, expires;
278
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
279
	u64 time_delta;
280 281 282 283
	int cpu;

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
284

285 286 287 288 289 290 291 292 293
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
294
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
295 296
	}

297
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
298
		return;
299 300

	if (need_resched())
301
		return;
302

303
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
304 305 306 307
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
308
			       (unsigned int) local_softirq_pending());
309 310
			ratelimit++;
		}
311
		return;
312
	}
313 314 315 316 317 318 319

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
320
		time_delta = timekeeping_max_deferment();
321 322
	} while (read_seqretry(&xtime_lock, seq));

323
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
324
	    arch_needs_cpu(cpu)) {
325
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
326
		delta_jiffies = 1;
327 328 329 330 331
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
332 333 334 335
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
336
	if (!ts->tick_stopped && delta_jiffies == 1)
337 338 339 340 341
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

342 343 344 345 346 347
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
348 349 350 351 352 353
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
354
		 */
T
Thomas Gleixner 已提交
355
		if (cpu == tick_do_timer_cpu) {
356
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
357 358 359 360 361 362 363 364
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

365
		/*
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
383

T
Thomas Gleixner 已提交
384 385 386 387
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
388 389 390 391 392

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

393 394 395 396 397 398 399 400
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
401
			select_nohz_load_balancer(1);
402

403
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
404 405 406
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
		}
407

408 409
		ts->idle_sleeps++;

410 411 412
		/* Mark expires */
		ts->idle_expires = expires;

413
		/*
414 415
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
416
		 */
417
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
418 419 420 421 422
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

423 424
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
425
				      HRTIMER_MODE_ABS_PINNED);
426 427 428
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
429
		} else if (!tick_program_event(expires, 0))
430 431 432 433 434 435 436 437 438 439 440 441
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
442
	ts->sleep_length = ktime_sub(dev->next_event, now);
443 444
}

445 446 447 448 449 450 451 452
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
	ktime_t now;

	now = tick_nohz_start_idle(smp_processor_id(), ts);
	tick_nohz_stop_sched_tick(ts, now);
}

453 454 455 456 457
/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
458
 *
459
 * The arch is responsible of calling:
460 461 462 463
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
464
 */
465
void tick_nohz_idle_enter(void)
466 467 468
{
	struct tick_sched *ts;

469 470
	WARN_ON_ONCE(irqs_disabled());

471 472 473 474 475 476 477 478
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

479 480
	local_irq_disable();

481 482 483 484 485 486 487
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
488
	__tick_nohz_idle_enter(ts);
489 490

	local_irq_enable();
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

508
	__tick_nohz_idle_enter(ts);
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

523 524 525
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
526
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
527 528 529 530 531 532

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
533
			hrtimer_start_expires(&ts->sched_timer,
534
					      HRTIMER_MODE_ABS_PINNED);
535 536 537 538
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
539 540
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
541 542
				break;
		}
543
		/* Reread time and update jiffies */
544
		now = ktime_get();
545
		tick_do_update_jiffies64(now);
546 547 548
	}
}

549
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
550
{
551
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
552
	unsigned long ticks;
553
#endif
554
	/* Update jiffies first */
555
	select_nohz_load_balancer(0);
556
	tick_do_update_jiffies64(now);
557
	update_cpu_load_nohz();
558

559
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
560 561 562 563 564 565 566 567 568
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
569 570 571
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
572

I
Ingo Molnar 已提交
573
	touch_softlockup_watchdog();
574 575 576 577
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
578
	ts->idle_exittime = now;
579

580
	tick_nohz_restart(ts, now);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
}

/**
 * tick_nohz_idle_exit - restart the idle tick from the idle task
 *
 * Restart the idle tick when the CPU is woken up from idle
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
 */
void tick_nohz_idle_exit(void)
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	local_irq_disable();

	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);

	if (ts->tick_stopped)
		tick_nohz_restart_sched_tick(ts, now);
610 611 612 613 614 615 616

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
617
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
618 619 620 621 622 623 624 625 626
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
627
	int cpu = smp_processor_id();
628 629 630 631
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

632 633 634 635 636 637 638
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
639
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
640 641
		tick_do_timer_cpu = cpu;

642
	/* Check, if the jiffies need an update */
643 644
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
696
		hrtimer_set_expires(&ts->sched_timer, next);
697 698 699 700 701 702 703
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

704 705 706 707 708 709 710 711 712 713 714
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
715
static void tick_nohz_kick_tick(int cpu, ktime_t now)
716
{
717 718 719
#if 0
	/* Switch back to 2.6.27 behaviour */

720
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
721
	ktime_t delta;
722

723 724 725 726
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
727
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
728 729 730 731
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
732
#endif
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

751 752 753
#else

static inline void tick_nohz_switch_to_nohz(void) { }
754
static inline void tick_check_nohz(int cpu) { }
755 756 757

#endif /* NO_HZ */

758 759 760 761 762
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
763
	tick_check_oneshot_broadcast(cpu);
764
	tick_check_nohz(cpu);
765 766
}

767 768 769 770 771
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
772
 * We rearm the timer until we get disabled by the idle code.
773 774 775 776 777 778 779 780
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
781 782 783 784 785 786 787 788 789 790
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
791
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
792 793
		tick_do_timer_cpu = cpu;
#endif
794 795

	/* Check, if the jiffies need an update */
796 797
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
825 826
static int sched_skew_tick;

827 828 829 830 831 832 833 834
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

849
	/* Get the next period (per cpu) */
850
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
851

M
Mike Galbraith 已提交
852 853 854 855 856 857 858 859
	/* Offset the tick to avert xtime_lock contention. */
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

860 861
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
862 863
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
864 865 866 867 868 869 870
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
871
	if (tick_nohz_enabled)
872 873 874
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
875
#endif /* HIGH_RES_TIMERS */
876

877
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
878 879 880 881
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

882
# ifdef CONFIG_HIGH_RES_TIMERS
883 884
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
885
# endif
886

887 888
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
889
#endif
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

930
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
931 932 933 934 935 936 937 938
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}