vmstat.c 34.6 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 */
11
#include <linux/fs.h>
12
#include <linux/mm.h>
A
Alexey Dobriyan 已提交
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/cpu.h>
A
Adrian Bunk 已提交
17
#include <linux/vmstat.h>
A
Alexey Dobriyan 已提交
18
#include <linux/sched.h>
19
#include <linux/math64.h>
20
#include <linux/writeback.h>
21
#include <linux/compaction.h>
22 23 24
#include <linux/mm_inline.h>

#include "internal.h"
25

26 27 28 29
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

30
static void sum_vm_events(unsigned long *ret)
31
{
C
Christoph Lameter 已提交
32
	int cpu;
33 34 35 36
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

37
	for_each_online_cpu(cpu) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
K
KOSAKI Motohiro 已提交
52
	get_online_cpus();
53
	sum_vm_events(ret);
K
KOSAKI Motohiro 已提交
54
	put_online_cpus();
55
}
56
EXPORT_SYMBOL_GPL(all_vm_events);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

77 78 79 80 81
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
82
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 84 85 86
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

87
int calculate_pressure_threshold(struct zone *zone)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

111
int calculate_normal_threshold(struct zone *zone)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

146
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147 148 149 150 151 152 153 154 155 156

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
157 158

/*
159
 * Refresh the thresholds for each zone.
160
 */
161
void refresh_zone_stat_thresholds(void)
162
{
163 164 165 166
	struct zone *zone;
	int cpu;
	int threshold;

167
	for_each_populated_zone(zone) {
168 169
		unsigned long max_drift, tolerate_drift;

170
		threshold = calculate_normal_threshold(zone);
171 172

		for_each_online_cpu(cpu)
173 174
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
175 176 177 178 179 180 181 182 183 184 185

		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
186
	}
187 188
}

189 190
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
191 192 193 194 195 196 197 198 199 200 201
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

202 203
		threshold = (*calculate_pressure)(zone);
		for_each_possible_cpu(cpu)
204 205 206 207 208
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

209 210 211 212 213 214
/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
215 216
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
217
	long x;
218 219 220
	long t;

	x = delta + __this_cpu_read(*p);
221

222
	t = __this_cpu_read(pcp->stat_threshold);
223

224
	if (unlikely(x > t || x < -t)) {
225 226 227
		zone_page_state_add(x, zone, item);
		x = 0;
	}
228
	__this_cpu_write(*p, x);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
245 246 247
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
248 249 250 251 252 253 254
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
255
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256
{
257 258 259
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
260

261
	v = __this_cpu_inc_return(*p);
262 263 264
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
265

266 267
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
268 269
	}
}
270 271 272 273 274

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
275 276
EXPORT_SYMBOL(__inc_zone_page_state);

277
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278
{
279 280 281
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
282

283
	v = __this_cpu_dec_return(*p);
284 285 286
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
287

288 289
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
290 291
	}
}
292 293 294 295 296

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
297 298
EXPORT_SYMBOL(__dec_zone_page_state);

299
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
static inline void mod_state(struct zone *zone,
       enum zone_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
325 326 327 328 329 330
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	mod_state(zone, item, delta, 0);
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	mod_state(zone, item, 1, 1);
}

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_zone_page_state);
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

388 389 390 391 392 393 394 395 396
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

397 398 399 400 401 402 403
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
404
	__inc_zone_state(zone, item);
405 406 407 408 409 410 411 412 413
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
414
	__dec_zone_page_state(page, item);
415 416 417
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
418
#endif
419

C
Christoph Lameter 已提交
420 421 422 423 424 425 426 427 428
static inline void fold_diff(int *diff)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (diff[i])
			atomic_long_add(diff[i], &vm_stat[i]);
}

429
/*
430
 * Update the zone counters for the current cpu.
431
 *
432 433 434 435 436 437 438 439 440 441
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
442
 */
443
static void refresh_cpu_vm_stats(void)
444 445 446
{
	struct zone *zone;
	int i;
447
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
448

449
	for_each_populated_zone(zone) {
450
		struct per_cpu_pageset __percpu *p = zone->pageset;
451

452 453
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
454

455 456
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
457 458 459

				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
460 461
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
462
				__this_cpu_write(p->expire, 3);
463
#endif
464
			}
465
		}
466
		cond_resched();
467 468 469 470 471 472 473 474
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
475 476
		if (!__this_cpu_read(p->expire) ||
			       !__this_cpu_read(p->pcp.count))
477 478 479 480 481 482
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
483
			__this_cpu_write(p->expire, 0);
484 485 486
			continue;
		}

487 488

		if (__this_cpu_dec_return(p->expire))
489 490
			continue;

491 492
		if (__this_cpu_read(p->pcp.count))
			drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
493
#endif
494
	}
C
Christoph Lameter 已提交
495
	fold_diff(global_diff);
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
	struct zone *zone;
	int i;
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
			}
	}

C
Christoph Lameter 已提交
525
	fold_diff(global_diff);
526 527
}

528 529 530 531
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
532 533 534 535 536 537 538 539 540 541 542 543
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
			atomic_long_add(v, &vm_stat[i]);
		}
}
544 545
#endif

546 547 548 549 550 551
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
A
Andi Kleen 已提交
552 553 554 555
 *
 * When __GFP_OTHER_NODE is set assume the node of the preferred
 * zone is the local node. This is useful for daemons who allocate
 * memory on behalf of other processes.
556
 */
A
Andi Kleen 已提交
557
void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
558
{
559
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
560 561 562
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
563
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
564
	}
A
Andi Kleen 已提交
565 566
	if (z->node == ((flags & __GFP_OTHER_NODE) ?
			preferred_zone->node : numa_node_id()))
567 568 569 570 571 572
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

573
#ifdef CONFIG_COMPACTION
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
615 616 617 618 619 620 621 622

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
623
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
642 643 644 645 646 647 648 649 650

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
651 652 653
#endif

#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
654
#include <linux/proc_fs.h>
655 656
#include <linux/seq_file.h>

657 658 659 660 661
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
662 663 664
#ifdef CONFIG_CMA
	"CMA",
#endif
665
#ifdef CONFIG_MEMORY_ISOLATION
666
	"Isolate",
667
#endif
668 669
};

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

694 695 696
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
697 698 699 700 701 702 703 704 705 706
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
707
		print(m, pgdat, zone);
708
		spin_unlock_irqrestore(&zone->lock, flags);
709 710
	}
}
711
#endif
712

713
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
	/* Zoned VM counters */
	"nr_free_pages",
738
	"nr_alloc_batch",
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
	"nr_mlock",
	"nr_anon_pages",
	"nr_mapped",
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_unstable",
	"nr_bounce",
	"nr_vmscan_write",
757
	"nr_vmscan_immediate_reclaim",
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	"nr_writeback_temp",
	"nr_isolated_anon",
	"nr_isolated_file",
	"nr_shmem",
	"nr_dirtied",
	"nr_written",

#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
	"nr_anon_transparent_hugepages",
774
	"nr_free_cma",
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

	TEXTS_FOR_ZONES("pgrefill")
Y
Ying Han 已提交
794 795
	TEXTS_FOR_ZONES("pgsteal_kswapd")
	TEXTS_FOR_ZONES("pgsteal_direct")
796 797
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
798
	"pgscan_direct_throttle",
799 800 801 802 803 804 805 806 807 808 809 810 811 812

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",
	"allocstall",

	"pgrotated",

813 814 815 816 817 818
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
819 820 821 822
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
823
#ifdef CONFIG_COMPACTION
824 825 826
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	"compact_stall",
	"compact_fail",
	"compact_success",
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
	"thp_split",
850 851
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
852
#endif
853
#ifdef CONFIG_SMP
D
Dave Hansen 已提交
854 855
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
856
#endif
D
Dave Hansen 已提交
857 858
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
859 860 861

#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
862
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
863 864


865
#ifdef CONFIG_PROC_FS
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
908 909
		seq_putc(m, '\n');
	}
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
935
	unsigned long end_pfn = zone_end_pfn(zone);
936 937 938 939 940 941 942 943 944
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
945 946 947

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
948
			continue;
949

950 951
		mtype = get_pageblock_migratetype(page);

952 953
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

986
	/* check memoryless node */
987
	if (!node_state(pgdat->node_id, N_MEMORY))
988 989
		return 0;

990 991 992 993 994 995
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

996 997 998
	return 0;
}

999
static const struct seq_operations fragmentation_op = {
1000 1001 1002 1003 1004 1005
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1018
static const struct seq_operations pagetypeinfo_op = {
1019 1020 1021 1022 1023 1024
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1037 1038
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
1039
{
1040 1041 1042 1043 1044 1045 1046
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
1047
		   "\n        scanned  %lu"
1048
		   "\n        spanned  %lu"
1049 1050
		   "\n        present  %lu"
		   "\n        managed  %lu",
1051
		   zone_page_state(zone, NR_FREE_PAGES),
1052 1053 1054
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1055 1056
		   zone->pages_scanned,
		   zone->spanned_pages,
1057 1058
		   zone->present_pages,
		   zone->managed_pages);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
		   "\n        protection: (%lu",
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1075
		pageset = per_cpu_ptr(zone->pageset, i);
1076 1077 1078 1079 1080 1081 1082 1083 1084
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1085
#ifdef CONFIG_SMP
1086 1087
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1088
#endif
1089
	}
1090 1091
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
1092 1093
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
1094
		   !zone_reclaimable(zone),
1095 1096
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1107 1108 1109
	return 0;
}

1110
static const struct seq_operations zoneinfo_op = {
1111 1112 1113 1114 1115 1116 1117
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1130 1131 1132 1133 1134 1135
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

1136 1137
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1138
	unsigned long *v;
1139
	int i, stat_items_size;
1140 1141 1142

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
1143 1144
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1145

1146
#ifdef CONFIG_VM_EVENT_COUNTERS
1147
	stat_items_size += sizeof(struct vm_event_state);
1148
#endif
1149 1150

	v = kmalloc(stat_items_size, GFP_KERNEL);
1151 1152
	m->private = v;
	if (!v)
1153
		return ERR_PTR(-ENOMEM);
1154 1155
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
1156 1157 1158 1159 1160 1161
	v += NR_VM_ZONE_STAT_ITEMS;

	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1162
#ifdef CONFIG_VM_EVENT_COUNTERS
1163 1164 1165
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1166
#endif
1167
	return (unsigned long *)m->private + *pos;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1193
static const struct seq_operations vmstat_op = {
1194 1195 1196 1197 1198 1199
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1211 1212
#endif /* CONFIG_PROC_FS */

1213
#ifdef CONFIG_SMP
1214
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1215
int sysctl_stat_interval __read_mostly = HZ;
1216 1217 1218

static void vmstat_update(struct work_struct *w)
{
1219
	refresh_cpu_vm_stats();
1220
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
A
Anton Blanchard 已提交
1221
		round_jiffies_relative(sysctl_stat_interval));
1222 1223
}

1224
static void start_cpu_timer(int cpu)
1225
{
1226
	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1227

1228
	INIT_DEFERRABLE_WORK(work, vmstat_update);
1229
	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1230 1231
}

1232 1233 1234 1235
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
1236
static int vmstat_cpuup_callback(struct notifier_block *nfb,
1237 1238 1239
		unsigned long action,
		void *hcpu)
{
1240 1241
	long cpu = (long)hcpu;

1242
	switch (action) {
1243 1244
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
1245
		refresh_zone_stat_thresholds();
1246
		start_cpu_timer(cpu);
1247
		node_set_state(cpu_to_node(cpu), N_CPU);
1248 1249 1250
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
1251
		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1252 1253 1254 1255 1256 1257
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
1258
	case CPU_DEAD:
1259
	case CPU_DEAD_FROZEN:
1260 1261 1262 1263
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
1264 1265 1266 1267
	}
	return NOTIFY_OK;
}

1268
static struct notifier_block vmstat_notifier =
1269
	{ &vmstat_cpuup_callback, NULL, 0 };
1270
#endif
1271

A
Adrian Bunk 已提交
1272
static int __init setup_vmstat(void)
1273
{
1274
#ifdef CONFIG_SMP
1275 1276
	int cpu;

1277
	register_cpu_notifier(&vmstat_notifier);
1278 1279 1280

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
1281 1282 1283
#endif
#ifdef CONFIG_PROC_FS
	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1284
	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1285
	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1286
	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1287
#endif
1288 1289 1290
	return 0;
}
module_init(setup_vmstat)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
#include <linux/debugfs.h>


/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
1351
	if (!node_state(pgdat->node_id, N_MEMORY))
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		return 0;

	walk_zones_in_node(m, pgdat, unusable_show_print);

	return 0;
}

static const struct seq_operations unusable_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

static int unusable_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &unusable_op);
}

static const struct file_operations unusable_file_ops = {
	.open		= unusable_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
1392
		index = __fragmentation_index(order, &info);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	walk_zones_in_node(m, pgdat, extfrag_show_print);

	return 0;
}

static const struct seq_operations extfrag_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= extfrag_show,
};

static int extfrag_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &extfrag_op);
}

static const struct file_operations extfrag_file_ops = {
	.open		= extfrag_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1430 1431
static int __init extfrag_debug_init(void)
{
1432 1433
	struct dentry *extfrag_debug_root;

1434 1435 1436 1437 1438 1439
	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
	if (!extfrag_debug_root)
		return -ENOMEM;

	if (!debugfs_create_file("unusable_index", 0444,
			extfrag_debug_root, NULL, &unusable_file_ops))
1440
		goto fail;
1441

1442 1443
	if (!debugfs_create_file("extfrag_index", 0444,
			extfrag_debug_root, NULL, &extfrag_file_ops))
1444
		goto fail;
1445

1446
	return 0;
1447 1448 1449
fail:
	debugfs_remove_recursive(extfrag_debug_root);
	return -ENOMEM;
1450 1451 1452 1453
}

module_init(extfrag_debug_init);
#endif