vmstat.c 29.5 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 */
11
#include <linux/fs.h>
12
#include <linux/mm.h>
A
Alexey Dobriyan 已提交
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/cpu.h>
A
Adrian Bunk 已提交
17
#include <linux/vmstat.h>
A
Alexey Dobriyan 已提交
18
#include <linux/sched.h>
19
#include <linux/math64.h>
20
#include <linux/writeback.h>
21
#include <linux/compaction.h>
22

23 24 25 26
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

27
static void sum_vm_events(unsigned long *ret)
28
{
C
Christoph Lameter 已提交
29
	int cpu;
30 31 32 33
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

34
	for_each_online_cpu(cpu) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
K
KOSAKI Motohiro 已提交
49
	get_online_cpus();
50
	sum_vm_events(ret);
K
KOSAKI Motohiro 已提交
51
	put_online_cpus();
52
}
53
EXPORT_SYMBOL_GPL(all_vm_events);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

76 77 78 79 80 81 82 83 84 85
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
132 133

/*
134
 * Refresh the thresholds for each zone.
135
 */
136
static void refresh_zone_stat_thresholds(void)
137
{
138 139 140 141
	struct zone *zone;
	int cpu;
	int threshold;

142
	for_each_populated_zone(zone) {
143 144
		unsigned long max_drift, tolerate_drift;

145 146 147
		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
148 149
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
150 151 152 153 154 155 156 157 158 159 160

		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
161
	}
162 163 164 165 166 167 168 169
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
170 171
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
172
	long x;
173 174 175
	long t;

	x = delta + __this_cpu_read(*p);
176

177
	t = __this_cpu_read(pcp->stat_threshold);
178

179
	if (unlikely(x > t || x < -t)) {
180 181 182
		zone_page_state_add(x, zone, item);
		x = 0;
	}
183
	__this_cpu_write(*p, x);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
214 215 216
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
217 218 219 220 221 222 223
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
224
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
225
{
226 227 228
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
229

230
	__this_cpu_inc(*p);
231

232 233 234 235
	v = __this_cpu_read(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
236

237 238
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
239 240
	}
}
241 242 243 244 245

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
246 247
EXPORT_SYMBOL(__inc_zone_page_state);

248
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
249
{
250 251 252
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
253

254
	__this_cpu_dec(*p);
255

256 257 258 259
	v = __this_cpu_read(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
260

261 262
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
263 264
	}
}
265 266 267 268 269

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
270 271
EXPORT_SYMBOL(__dec_zone_page_state);

272 273 274 275 276 277 278 279 280
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

281 282 283 284 285 286 287
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
288
	__inc_zone_state(zone, item);
289 290 291 292 293 294 295 296 297
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
298
	__dec_zone_page_state(page, item);
299 300 301 302 303 304
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
305
 *
306 307 308 309
 * The cpu specified must be either the current cpu or a processor that
 * is not online. If it is the current cpu then the execution thread must
 * be pinned to the current cpu.
 *
310 311 312 313 314 315 316 317 318 319
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
320 321 322 323 324
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
325
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
326

327
	for_each_populated_zone(zone) {
328
		struct per_cpu_pageset *p;
329

330
		p = per_cpu_ptr(zone->pageset, cpu);
331 332

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
333
			if (p->vm_stat_diff[i]) {
334 335 336
				unsigned long flags;
				int v;

337
				local_irq_save(flags);
338
				v = p->vm_stat_diff[i];
339
				p->vm_stat_diff[i] = 0;
340 341 342
				local_irq_restore(flags);
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
343 344 345 346
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
347
			}
348
		cond_resched();
349 350 351 352 353 354 355 356
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
357
		if (!p->expire || !p->pcp.count)
358 359 360 361 362 363 364 365 366 367 368 369 370 371
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

372 373
		if (p->pcp.count)
			drain_zone_pages(zone, &p->pcp);
374
#endif
375
	}
376 377 378 379

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (global_diff[i])
			atomic_long_add(global_diff[i], &vm_stat[i]);
380 381 382 383
}

#endif

384 385 386 387 388 389 390
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
391
void zone_statistics(struct zone *preferred_zone, struct zone *z)
392
{
393
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
394 395 396
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
397
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
398
	}
399
	if (z->node == numa_node_id())
400 401 402 403 404 405
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

406
#ifdef CONFIG_COMPACTION
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
448 449 450 451 452 453 454 455

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
456
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
475 476 477 478 479 480 481 482 483

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
484 485 486
#endif

#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
487
#include <linux/proc_fs.h>
488 489
#include <linux/seq_file.h>

490 491 492 493 494
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
495
	"Isolate",
496 497
};

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

522 523 524
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
525 526 527 528 529 530 531 532 533 534
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
535
		print(m, pgdat, zone);
536
		spin_unlock_irqrestore(&zone->lock, flags);
537 538
	}
}
539
#endif
540

541
#ifdef CONFIG_PROC_FS
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
584 585
		seq_putc(m, '\n');
	}
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = start_pfn + zone->spanned_pages;
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
621 622 623

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
624
			continue;
625

626 627
		mtype = get_pageblock_migratetype(page);

628 629
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

662 663 664 665
	/* check memoryless node */
	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
		return 0;

666 667 668 669 670 671
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

672 673 674
	return 0;
}

675
static const struct seq_operations fragmentation_op = {
676 677 678 679 680 681
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

682 683 684 685 686 687 688 689 690 691 692 693
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

694
static const struct seq_operations pagetypeinfo_op = {
695 696 697 698 699 700
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

701 702 703 704 705 706 707 708 709 710 711 712
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

713 714 715 716 717 718
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

719 720 721 722 723 724 725 726 727 728 729 730
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

731
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
M
Mel Gorman 已提交
732
					TEXT_FOR_HIGHMEM(xx) xx "_movable",
733

734
static const char * const vmstat_text[] = {
735
	/* Zoned VM counters */
736
	"nr_free_pages",
737 738 739 740
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
L
Lee Schermerhorn 已提交
741
	"nr_unevictable",
N
Nick Piggin 已提交
742
	"nr_mlock",
743
	"nr_anon_pages",
744
	"nr_mapped",
745
	"nr_file_pages",
746 747
	"nr_dirty",
	"nr_writeback",
748 749
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
750
	"nr_page_table_pages",
751
	"nr_kernel_stack",
752
	"nr_unstable",
753
	"nr_bounce",
754
	"nr_vmscan_write",
755
	"nr_writeback_temp",
K
KOSAKI Motohiro 已提交
756 757
	"nr_isolated_anon",
	"nr_isolated_file",
758
	"nr_shmem",
759 760 761
	"nr_dirtied",
	"nr_written",

762 763 764 765 766 767 768 769
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
770 771
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",
772

773
#ifdef CONFIG_VM_EVENT_COUNTERS
774 775 776 777 778
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

779
	TEXTS_FOR_ZONES("pgalloc")
780 781 782 783 784 785 786 787

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

788 789 790 791
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
792

793 794 795
#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
796 797 798 799
	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
800 801 802
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"kswapd_skip_congestion_wait",
803 804 805 806
	"pageoutrun",
	"allocstall",

	"pgrotated",
807 808 809 810 811

#ifdef CONFIG_COMPACTION
	"compact_blocks_moved",
	"compact_pages_moved",
	"compact_pagemigrate_failed",
812 813 814
	"compact_stall",
	"compact_fail",
	"compact_success",
815 816
#endif

817 818 819 820
#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
821 822 823
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
N
Nick Piggin 已提交
824 825 826 827
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",
828
	"unevictable_pgs_mlockfreed",
829
#endif
830 831
};

832 833
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
834
{
835 836 837 838 839 840 841
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
842
		   "\n        scanned  %lu"
843 844
		   "\n        spanned  %lu"
		   "\n        present  %lu",
845
		   zone_nr_free_pages(zone),
846 847 848
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		   zone->pages_scanned,
		   zone->spanned_pages,
		   zone->present_pages);

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
		   "\n        protection: (%lu",
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

868
		pageset = per_cpu_ptr(zone->pageset, i);
869 870 871 872 873 874 875 876 877
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
878
#ifdef CONFIG_SMP
879 880
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
881
#endif
882
	}
883 884
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
885 886
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
887
		   zone->all_unreclaimable,
888 889
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
890 891 892 893 894 895 896 897 898 899
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
900 901 902
	return 0;
}

903
static const struct seq_operations zoneinfo_op = {
904 905 906 907 908 909 910
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

911 912 913 914 915 916 917 918 919 920 921 922
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

923 924 925 926 927 928
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

929 930
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
931
	unsigned long *v;
932
	int i, stat_items_size;
933 934 935

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
936 937
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
938

939
#ifdef CONFIG_VM_EVENT_COUNTERS
940
	stat_items_size += sizeof(struct vm_event_state);
941
#endif
942 943

	v = kmalloc(stat_items_size, GFP_KERNEL);
944 945
	m->private = v;
	if (!v)
946
		return ERR_PTR(-ENOMEM);
947 948
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
949 950 951 952 953 954
	v += NR_VM_ZONE_STAT_ITEMS;

	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

955
#ifdef CONFIG_VM_EVENT_COUNTERS
956 957 958
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
959
#endif
960
	return (unsigned long *)m->private + *pos;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

986
static const struct seq_operations vmstat_op = {
987 988 989 990 991 992
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

993 994 995 996 997 998 999 1000 1001 1002 1003
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1004 1005
#endif /* CONFIG_PROC_FS */

1006
#ifdef CONFIG_SMP
1007
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1008
int sysctl_stat_interval __read_mostly = HZ;
1009 1010 1011 1012

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
1013
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
A
Anton Blanchard 已提交
1014
		round_jiffies_relative(sysctl_stat_interval));
1015 1016
}

1017
static void __cpuinit start_cpu_timer(int cpu)
1018
{
1019
	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1020

1021 1022
	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
1033 1034
	long cpu = (long)hcpu;

1035
	switch (action) {
1036 1037
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
1038
		refresh_zone_stat_thresholds();
1039
		start_cpu_timer(cpu);
1040
		node_set_state(cpu_to_node(cpu), N_CPU);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
1051
	case CPU_DEAD:
1052
	case CPU_DEAD_FROZEN:
1053 1054 1055 1056
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
1057 1058 1059 1060 1061 1062
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };
1063
#endif
1064

A
Adrian Bunk 已提交
1065
static int __init setup_vmstat(void)
1066
{
1067
#ifdef CONFIG_SMP
1068 1069
	int cpu;

1070 1071
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
1072 1073 1074

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
1075 1076 1077
#endif
#ifdef CONFIG_PROC_FS
	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1078
	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1079
	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1080
	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1081
#endif
1082 1083 1084
	return 0;
}
module_init(setup_vmstat)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
#include <linux/debugfs.h>

static struct dentry *extfrag_debug_root;

/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
		return 0;

	walk_zones_in_node(m, pgdat, unusable_show_print);

	return 0;
}

static const struct seq_operations unusable_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

static int unusable_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &unusable_op);
}

static const struct file_operations unusable_file_ops = {
	.open		= unusable_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
1187
		index = __fragmentation_index(order, &info);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	walk_zones_in_node(m, pgdat, extfrag_show_print);

	return 0;
}

static const struct seq_operations extfrag_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= extfrag_show,
};

static int extfrag_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &extfrag_op);
}

static const struct file_operations extfrag_file_ops = {
	.open		= extfrag_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static int __init extfrag_debug_init(void)
{
	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
	if (!extfrag_debug_root)
		return -ENOMEM;

	if (!debugfs_create_file("unusable_index", 0444,
			extfrag_debug_root, NULL, &unusable_file_ops))
		return -ENOMEM;

1235 1236 1237 1238
	if (!debugfs_create_file("extfrag_index", 0444,
			extfrag_debug_root, NULL, &extfrag_file_ops))
		return -ENOMEM;

1239 1240 1241 1242 1243
	return 0;
}

module_init(extfrag_debug_init);
#endif