tree.c 111.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 84
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85
struct rcu_state sname##_state = { \
86
	.level = { &sname##_state.node[0] }, \
87
	.call = cr, \
88
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
89 90
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
91
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 93
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
94
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96
	.name = sname##_varname, \
97
	.abbr = sabbr, \
98 99
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
100

101 102
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103

104
static struct rcu_state *rcu_state;
105
LIST_HEAD(rcu_struct_flavors);
106

107 108
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109
module_param(rcu_fanout_leaf, int, 0444);
110 111 112 113 114 115 116 117 118 119
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

120 121 122 123
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
124
 * optimize synchronize_sched() to a simple barrier().  When this variable
125 126 127 128
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
129 130 131
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

146 147
#ifdef CONFIG_RCU_BOOST

148 149 150 151 152
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155
DEFINE_PER_CPU(char, rcu_cpu_has_work);
156

157 158
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
159
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 161
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

175 176 177 178 179 180 181 182 183 184
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

185
/*
186
 * Note a quiescent state.  Because we do not need to know
187
 * how many quiescent states passed, just if there was at least
188
 * one since the start of the grace period, this just sets a flag.
189
 * The caller must have disabled preemption.
190
 */
191
void rcu_sched_qs(int cpu)
192
{
193
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194

195
	if (rdp->passed_quiesce == 0)
196
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197
	rdp->passed_quiesce = 1;
198 199
}

200
void rcu_bh_qs(int cpu)
201
{
202
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203

204
	if (rdp->passed_quiesce == 0)
205
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206
	rdp->passed_quiesce = 1;
207
}
208

209 210 211
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
212
 * The caller must have disabled preemption.
213 214 215
 */
void rcu_note_context_switch(int cpu)
{
216
	trace_rcu_utilization(TPS("Start context switch"));
217
	rcu_sched_qs(cpu);
218
	rcu_preempt_note_context_switch(cpu);
219
	trace_rcu_utilization(TPS("End context switch"));
220
}
221
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222

223
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225
	.dynticks = ATOMIC_INIT(1),
226 227 228 229
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230
};
231

E
Eric Dumazet 已提交
232 233 234
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
235

E
Eric Dumazet 已提交
236 237 238
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
239

240 241
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
242 243 244 245

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

246
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247
				  struct rcu_data *rdp);
248 249 250 251
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
252
static void force_quiescent_state(struct rcu_state *rsp);
253
static int rcu_pending(int cpu);
254 255

/*
256
 * Return the number of RCU-sched batches processed thus far for debug & stats.
257
 */
258
long rcu_batches_completed_sched(void)
259
{
260
	return rcu_sched_state.completed;
261
}
262
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263 264 265 266 267 268 269 270 271 272

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

273 274 275 276 277
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
278
	force_quiescent_state(&rcu_bh_state);
279 280 281
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

307 308 309 310 311
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
312
	force_quiescent_state(&rcu_sched_state);
313 314 315
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

316 317 318 319 320 321
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
322 323
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
324 325
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

348
/*
349 350 351
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
352 353 354 355
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
356
	int i;
P
Paul E. McKenney 已提交
357

358 359
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
360
	if (rcu_future_needs_gp(rsp))
361
		return 1;  /* Yes, a no-CBs CPU needs one. */
362 363 364 365 366 367 368 369 370 371
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
372 373
}

374
/*
375
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
376 377 378 379 380
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
381 382
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
383
{
384 385 386
	struct rcu_state *rsp;
	struct rcu_data *rdp;

387
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
388
	if (!user && !is_idle_task(current)) {
389 390
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
391

392
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
393
		ftrace_dump(DUMP_ORIG);
394 395 396
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
397
	}
398 399 400 401
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
402
	rcu_prepare_for_idle(smp_processor_id());
403 404 405 406 407
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
408 409

	/*
410
	 * It is illegal to enter an extended quiescent state while
411 412 413 414 415 416 417 418
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
419
}
420

421 422 423
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
424
 */
425
static void rcu_eqs_enter(bool user)
426
{
427
	long long oldval;
428 429
	struct rcu_dynticks *rdtp;

430
	rdtp = this_cpu_ptr(&rcu_dynticks);
431
	oldval = rdtp->dynticks_nesting;
432
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
433
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
434
		rdtp->dynticks_nesting = 0;
435 436
		rcu_eqs_enter_common(rdtp, oldval, user);
	} else {
437
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
438
	}
439
}
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
455 456 457
	unsigned long flags;

	local_irq_save(flags);
458
	rcu_eqs_enter(false);
459
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
460
	local_irq_restore(flags);
461
}
462
EXPORT_SYMBOL_GPL(rcu_idle_enter);
463

464
#ifdef CONFIG_RCU_USER_QS
465 466 467 468 469 470 471 472 473 474
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
475
	rcu_eqs_enter(1);
476
}
477
#endif /* CONFIG_RCU_USER_QS */
478

479 480 481 482 483 484
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
485
 *
486 487 488 489 490 491 492 493
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
494
 */
495
void rcu_irq_exit(void)
496 497
{
	unsigned long flags;
498
	long long oldval;
499 500 501
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
502
	rdtp = this_cpu_ptr(&rcu_dynticks);
503
	oldval = rdtp->dynticks_nesting;
504 505
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
506
	if (rdtp->dynticks_nesting)
507
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
508
	else
509
		rcu_eqs_enter_common(rdtp, oldval, true);
510
	rcu_sysidle_enter(rdtp, 1);
511 512 513 514
	local_irq_restore(flags);
}

/*
515
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
516 517 518 519 520
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
521 522
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
523
{
524 525 526 527 528
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
529
	rcu_cleanup_after_idle(smp_processor_id());
530
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
531
	if (!user && !is_idle_task(current)) {
532 533
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
534

535
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
536
				  oldval, rdtp->dynticks_nesting);
537
		ftrace_dump(DUMP_ORIG);
538 539 540
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
541 542 543
	}
}

544 545 546
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
547
 */
548
static void rcu_eqs_exit(bool user)
549 550 551 552
{
	struct rcu_dynticks *rdtp;
	long long oldval;

553
	rdtp = this_cpu_ptr(&rcu_dynticks);
554
	oldval = rdtp->dynticks_nesting;
555
	WARN_ON_ONCE(oldval < 0);
556
	if (oldval & DYNTICK_TASK_NEST_MASK) {
557
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
558
	} else {
559
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
560 561
		rcu_eqs_exit_common(rdtp, oldval, user);
	}
562
}
563 564 565 566 567 568 569 570 571 572 573 574 575 576

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
577 578 579
	unsigned long flags;

	local_irq_save(flags);
580
	rcu_eqs_exit(false);
581
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
582
	local_irq_restore(flags);
583
}
584
EXPORT_SYMBOL_GPL(rcu_idle_exit);
585

586
#ifdef CONFIG_RCU_USER_QS
587 588 589 590 591 592 593 594
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
595
	rcu_eqs_exit(1);
596
}
597
#endif /* CONFIG_RCU_USER_QS */
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
625
	rdtp = this_cpu_ptr(&rcu_dynticks);
626 627 628
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
629
	if (oldval)
630
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
631
	else
632
		rcu_eqs_exit_common(rdtp, oldval, true);
633
	rcu_sysidle_exit(rdtp, 1);
634 635 636 637 638 639 640 641 642 643 644 645
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
646
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
647

648 649
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
650
		return;
651 652 653 654 655 656
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
657 658 659 660 661 662 663 664 665 666 667
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
668
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
669

670 671
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
672
		return;
673 674 675 676 677
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
678 679 680
}

/**
681 682 683 684 685 686 687
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
688
bool notrace __rcu_is_watching(void)
689 690 691 692 693 694
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
695
 *
696
 * If the current CPU is in its idle loop and is neither in an interrupt
697
 * or NMI handler, return true.
698
 */
699
bool notrace rcu_is_watching(void)
700
{
701 702 703
	int ret;

	preempt_disable();
704
	ret = __rcu_is_watching();
705 706
	preempt_enable();
	return ret;
707
}
708
EXPORT_SYMBOL_GPL(rcu_is_watching);
709

710
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
711 712 713 714 715 716 717

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
718 719 720 721 722 723 724 725 726 727 728
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
729 730 731 732 733 734
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
735 736
	struct rcu_data *rdp;
	struct rcu_node *rnp;
737 738 739
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
740
		return true;
741
	preempt_disable();
742
	rdp = this_cpu_ptr(&rcu_sched_data);
743 744
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
745 746 747 748 749 750
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

751
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
752

753
/**
754
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
755
 *
756 757 758
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
759
 */
760
static int rcu_is_cpu_rrupt_from_idle(void)
761
{
762
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
763 764 765 766 767
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
768
 * is in dynticks idle mode, which is an extended quiescent state.
769
 */
770 771
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
772
{
773
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
774
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
775
	return (rdp->dynticks_snap & 0x1) == 0;
776 777
}

778 779 780 781 782 783
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

784 785 786 787
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
788
 * for this same CPU, or by virtue of having been offline.
789
 */
790 791
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
792
{
793 794
	unsigned int curr;
	unsigned int snap;
795

796 797
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
798 799 800 801 802 803 804 805 806

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
807
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
808
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
809 810 811 812
		rdp->dynticks_fqs++;
		return 1;
	}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
828
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
829 830 831
		rdp->offline_fqs++;
		return 1;
	}
832 833 834 835 836 837 838 839 840 841

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

842 843 844 845 846 847 848 849 850 851
	/*
	 * Alternatively, the CPU might be running in the kernel
	 * for an extended period of time without a quiescent state.
	 * Attempt to force the CPU through the scheduler to gain the
	 * needed quiescent state, but only if the grace period has gone
	 * on for an uncommonly long time.  If there are many stuck CPUs,
	 * we will beat on the first one until it gets unstuck, then move
	 * to the next.  Only do this for the primary flavor of RCU.
	 */
	if (rdp->rsp == rcu_state &&
852
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
853 854 855 856
		rdp->rsp->jiffies_resched += 5;
		resched_cpu(rdp->cpu);
	}

857
	return 0;
858 859 860 861
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
862
	unsigned long j = jiffies;
863
	unsigned long j1;
864 865 866

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
867
	j1 = rcu_jiffies_till_stall_check();
868
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
869
	rsp->jiffies_resched = j + j1 / 2;
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

895 896 897 898 899
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
900
	int ndetected = 0;
901
	struct rcu_node *rnp = rcu_get_root(rsp);
902
	long totqlen = 0;
903 904 905

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
906
	raw_spin_lock_irqsave(&rnp->lock, flags);
907
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
908
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
909
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 911
		return;
	}
912
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
913
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
914

915 916 917 918 919
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
920
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
921
	       rsp->name);
922
	print_cpu_stall_info_begin();
923
	rcu_for_each_leaf_node(rsp, rnp) {
924
		raw_spin_lock_irqsave(&rnp->lock, flags);
925
		ndetected += rcu_print_task_stall(rnp);
926 927 928 929 930 931 932 933
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
934
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
935
	}
936 937 938 939 940 941 942

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
943
	ndetected += rcu_print_task_stall(rnp);
944 945 946
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
947 948
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
949
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
950
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
951
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
952
	if (ndetected == 0)
953
		pr_err("INFO: Stall ended before state dump start\n");
954
	else if (!trigger_all_cpu_backtrace())
955
		rcu_dump_cpu_stacks(rsp);
956

957
	/* Complain about tasks blocking the grace period. */
958 959 960

	rcu_print_detail_task_stall(rsp);

961
	force_quiescent_state(rsp);  /* Kick them all. */
962 963
}

964 965 966 967 968 969
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

970 971
static void print_cpu_stall(struct rcu_state *rsp)
{
972
	int cpu;
973 974
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
975
	long totqlen = 0;
976

977 978 979 980 981
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
982
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
983 984 985
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
986 987
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
988 989 990
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
991 992
	if (!trigger_all_cpu_backtrace())
		dump_stack();
993

P
Paul E. McKenney 已提交
994
	raw_spin_lock_irqsave(&rnp->lock, flags);
995 996
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
997
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
998
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
999

1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1008 1009 1010 1011
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1012 1013 1014
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1015 1016
	unsigned long j;
	unsigned long js;
1017 1018
	struct rcu_node *rnp;

1019
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1020
		return;
1021
	j = jiffies;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1042
	js = ACCESS_ONCE(rsp->jiffies_stall);
1043 1044 1045 1046 1047 1048 1049 1050
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1051
	rnp = rdp->mynode;
1052
	if (rcu_gp_in_progress(rsp) &&
1053
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1054 1055 1056 1057

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1058 1059
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1060

1061
		/* They had a few time units to dump stack, so complain. */
1062 1063 1064 1065
		print_other_cpu_stall(rsp);
	}
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1077 1078 1079
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1080
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1081 1082
}

1083 1084 1085 1086 1087 1088 1089
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1090 1091
	if (init_nocb_callback_list(rdp))
		return;
1092 1093 1094 1095 1096
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1126 1127 1128 1129 1130
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1131
				unsigned long c, const char *s)
1132 1133 1134 1135 1136 1137 1138 1139 1140
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1141 1142
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1143 1144 1145
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1146 1147 1148
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1149 1150 1151
{
	unsigned long c;
	int i;
1152
	bool ret = false;
1153 1154 1155 1156 1157 1158 1159
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1160
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1161
	if (rnp->need_future_gp[c & 0x1]) {
1162
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1163
		goto out;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
1176
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1177
		goto out;
1178 1179 1180 1181 1182 1183 1184
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1185
	if (rnp != rnp_root) {
1186
		raw_spin_lock(&rnp_root->lock);
1187 1188
		smp_mb__after_unlock_lock();
	}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1206
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1207 1208 1209 1210 1211 1212 1213 1214
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1215
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1216
	} else {
1217
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1218
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1219 1220 1221 1222
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1223 1224 1225 1226
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1244 1245
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1246 1247 1248
	return needmore;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1265 1266 1267 1268 1269 1270 1271
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1272 1273
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1274 1275 1276
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1277
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1278 1279 1280 1281
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1282
	bool ret;
1283 1284 1285

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1286
		return false;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1315
		return false;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1326
	/* Record any needed additional grace periods. */
1327
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1328 1329 1330

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1331
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1332
	else
1333
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1334
	return ret;
1335 1336 1337 1338 1339 1340 1341 1342
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1343
 * Returns true if the RCU grace-period kthread needs to be awakened.
1344 1345 1346
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1347
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1348 1349 1350 1351 1352 1353
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1354
		return false;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1378
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1379 1380
}

1381
/*
1382 1383 1384
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1385
 * Returns true if the grace-period kthread needs to be awakened.
1386
 */
1387 1388
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1389
{
1390 1391
	bool ret;

1392
	/* Handle the ends of any preceding grace periods first. */
1393
	if (rdp->completed == rnp->completed) {
1394

1395
		/* No grace period end, so just accelerate recent callbacks. */
1396
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1397

1398 1399 1400
	} else {

		/* Advance callbacks. */
1401
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1402 1403 1404

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1405
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1406
	}
1407

1408 1409 1410 1411 1412 1413 1414
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1415
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1416 1417 1418 1419
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
1420
	return ret;
1421 1422
}

1423
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1424 1425
{
	unsigned long flags;
1426
	bool needwake;
1427 1428 1429 1430
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1431 1432
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1433 1434 1435 1436
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1437
	smp_mb__after_unlock_lock();
1438
	needwake = __note_gp_changes(rsp, rnp, rdp);
1439
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1440 1441
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1442 1443
}

1444
/*
1445
 * Initialize a new grace period.  Return 0 if no grace period required.
1446
 */
1447
static int rcu_gp_init(struct rcu_state *rsp)
1448 1449
{
	struct rcu_data *rdp;
1450
	struct rcu_node *rnp = rcu_get_root(rsp);
1451

1452
	rcu_bind_gp_kthread();
1453
	raw_spin_lock_irq(&rnp->lock);
1454
	smp_mb__after_unlock_lock();
1455
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1456 1457 1458 1459
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1460
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1461

1462 1463 1464 1465 1466
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1467 1468 1469 1470 1471
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1472
	record_gp_stall_check_time(rsp);
1473 1474
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1475
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1476 1477 1478
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1479
	mutex_lock(&rsp->onoff_mutex);
1480
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1496
		raw_spin_lock_irq(&rnp->lock);
1497
		smp_mb__after_unlock_lock();
1498
		rdp = this_cpu_ptr(rsp->rda);
1499 1500
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1501
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1502
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1503
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1504
		if (rnp == rdp->mynode)
1505
			(void)__note_gp_changes(rsp, rnp, rdp);
1506 1507 1508 1509 1510
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1511
#ifdef CONFIG_PROVE_RCU_DELAY
1512
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1513
		    system_state == SYSTEM_RUNNING)
1514
			udelay(200);
1515
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1516 1517
		cond_resched();
	}
1518

1519
	mutex_unlock(&rsp->onoff_mutex);
1520 1521
	return 1;
}
1522

1523 1524 1525
/*
 * Do one round of quiescent-state forcing.
 */
1526
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1527 1528
{
	int fqs_state = fqs_state_in;
1529 1530
	bool isidle = false;
	unsigned long maxj;
1531 1532 1533 1534 1535
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1536 1537 1538 1539
		if (is_sysidle_rcu_state(rsp)) {
			isidle = 1;
			maxj = jiffies - ULONG_MAX / 4;
		}
1540 1541
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1542
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1543 1544 1545
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1546
		isidle = 0;
1547
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1548 1549 1550 1551
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1552
		smp_mb__after_unlock_lock();
1553
		ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1554 1555 1556 1557 1558
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1559 1560 1561
/*
 * Clean up after the old grace period.
 */
1562
static void rcu_gp_cleanup(struct rcu_state *rsp)
1563 1564
{
	unsigned long gp_duration;
1565
	bool needgp = false;
1566
	int nocb = 0;
1567 1568
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1569

1570
	raw_spin_lock_irq(&rnp->lock);
1571
	smp_mb__after_unlock_lock();
1572 1573 1574
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1575

1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1584
	raw_spin_unlock_irq(&rnp->lock);
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1596
		raw_spin_lock_irq(&rnp->lock);
1597
		smp_mb__after_unlock_lock();
1598
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1599 1600
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1601
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1602
		/* smp_mb() provided by prior unlock-lock pair. */
1603
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1604 1605
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1606
	}
1607 1608
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1609
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1610
	rcu_nocb_gp_set(rnp, nocb);
1611

1612 1613
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1614
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1615
	rsp->fqs_state = RCU_GP_IDLE;
1616
	rdp = this_cpu_ptr(rsp->rda);
1617 1618 1619
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1620
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1621 1622 1623 1624
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1625 1626 1627 1628 1629 1630 1631 1632
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1633
	int fqs_state;
1634
	int gf;
1635
	unsigned long j;
1636
	int ret;
1637 1638 1639 1640 1641 1642 1643
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1644 1645 1646
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1647
			wait_event_interruptible(rsp->gp_wq,
1648
						 ACCESS_ONCE(rsp->gp_flags) &
1649
						 RCU_GP_FLAG_INIT);
1650
			/* Locking provides needed memory barrier. */
1651
			if (rcu_gp_init(rsp))
1652 1653 1654
				break;
			cond_resched();
			flush_signals(current);
1655 1656 1657
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1658
		}
1659

1660 1661
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1662 1663 1664 1665 1666
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1667
		ret = 0;
1668
		for (;;) {
1669 1670
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1671 1672 1673
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1674
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1675 1676
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1677 1678
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1679
					j);
1680
			/* Locking provides needed memory barriers. */
1681
			/* If grace period done, leave loop. */
1682
			if (!ACCESS_ONCE(rnp->qsmask) &&
1683
			    !rcu_preempt_blocked_readers_cgp(rnp))
1684
				break;
1685
			/* If time for quiescent-state forcing, do it. */
1686 1687
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1688 1689 1690
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1691
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1692 1693 1694
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1695 1696 1697 1698 1699
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1700 1701 1702
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1703
			}
1704 1705 1706 1707 1708 1709 1710 1711
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1712
		}
1713 1714 1715

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1716 1717 1718
	}
}

1719 1720 1721
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1722
 * the root node's ->lock and hard irqs must be disabled.
1723 1724 1725 1726
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1727 1728
 *
 * Returns true if the grace-period kthread must be awakened.
1729
 */
1730
static bool
1731 1732
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1733
{
1734
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1735
		/*
1736
		 * Either we have not yet spawned the grace-period
1737 1738
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1739
		 * Either way, don't start a new grace period.
1740
		 */
1741
		return false;
1742
	}
1743
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1744 1745
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1746

1747 1748
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1749
	 * could cause possible deadlocks with the rq->lock. Defer
1750
	 * the wakeup to our caller.
1751
	 */
1752
	return true;
1753 1754
}

1755 1756 1757 1758 1759 1760
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1761 1762
 *
 * Returns true if the grace-period kthread needs to be awakened.
1763
 */
1764
static bool rcu_start_gp(struct rcu_state *rsp)
1765 1766 1767
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1768
	bool ret = false;
1769 1770 1771 1772 1773 1774 1775 1776 1777

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1778 1779 1780
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1781 1782
}

1783
/*
P
Paul E. McKenney 已提交
1784 1785 1786
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1787 1788
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1789
 */
P
Paul E. McKenney 已提交
1790
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1791
	__releases(rcu_get_root(rsp)->lock)
1792
{
1793
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1794 1795
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1796 1797
}

1798
/*
P
Paul E. McKenney 已提交
1799 1800 1801 1802 1803 1804
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1805 1806
 */
static void
P
Paul E. McKenney 已提交
1807 1808
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1809 1810
	__releases(rnp->lock)
{
1811 1812
	struct rcu_node *rnp_c;

1813 1814 1815 1816 1817
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1818
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1819 1820 1821
			return;
		}
		rnp->qsmask &= ~mask;
1822 1823 1824 1825
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1826
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1827 1828

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1829
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1830 1831 1832 1833 1834 1835 1836 1837 1838
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1839
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1840
		rnp_c = rnp;
1841
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1842
		raw_spin_lock_irqsave(&rnp->lock, flags);
1843
		smp_mb__after_unlock_lock();
1844
		WARN_ON_ONCE(rnp_c->qsmask);
1845 1846 1847 1848
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1849
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1850
	 * to clean up and start the next grace period if one is needed.
1851
	 */
P
Paul E. McKenney 已提交
1852
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1853 1854 1855
}

/*
P
Paul E. McKenney 已提交
1856 1857 1858 1859 1860 1861 1862
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1863 1864
 */
static void
1865
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1866 1867 1868
{
	unsigned long flags;
	unsigned long mask;
1869
	bool needwake;
1870 1871 1872
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1873
	raw_spin_lock_irqsave(&rnp->lock, flags);
1874
	smp_mb__after_unlock_lock();
1875 1876
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1877 1878

		/*
1879 1880 1881 1882
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1883
		 */
1884
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1885
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1886 1887 1888 1889
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1890
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1891 1892 1893 1894 1895 1896 1897
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1898
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1899

P
Paul E. McKenney 已提交
1900
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1901 1902
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
1915 1916
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1929
	if (!rdp->passed_quiesce)
1930 1931
		return;

P
Paul E. McKenney 已提交
1932 1933 1934 1935
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1936
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1937 1938 1939 1940
}

#ifdef CONFIG_HOTPLUG_CPU

1941
/*
1942 1943
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1944
 * ->orphan_lock.
1945
 */
1946 1947 1948
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1949
{
P
Paul E. McKenney 已提交
1950
	/* No-CBs CPUs do not have orphanable callbacks. */
1951
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1952 1953
		return;

1954 1955
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1956 1957
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1958
	 */
1959
	if (rdp->nxtlist != NULL) {
1960 1961 1962
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1963
		rdp->qlen_lazy = 0;
1964
		ACCESS_ONCE(rdp->qlen) = 0;
1965 1966 1967
	}

	/*
1968 1969 1970 1971 1972 1973 1974
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1975
	 */
1976 1977 1978 1979
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1980 1981 1982
	}

	/*
1983 1984 1985
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1986
	 */
1987
	if (rdp->nxtlist != NULL) {
1988 1989
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1990
	}
1991

1992
	/* Finally, initialize the rcu_data structure's list to empty.  */
1993
	init_callback_list(rdp);
1994 1995 1996 1997
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1998
 * orphanage.  The caller must hold the ->orphan_lock.
1999
 */
2000
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2001 2002 2003 2004
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
2005
	/* No-CBs CPUs are handled specially. */
2006
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2007 2008
		return;

2009 2010 2011 2012
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2013 2014
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2054 2055
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2056
			       TPS("cpuofl"));
2057 2058 2059
}

/*
2060
 * The CPU has been completely removed, and some other CPU is reporting
2061 2062
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2063 2064
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2065
 */
2066
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2067
{
2068 2069 2070
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2071
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2072
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2073

2074
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2075
	rcu_boost_kthread_setaffinity(rnp, -1);
2076

2077
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2078 2079

	/* Exclude any attempts to start a new grace period. */
2080
	mutex_lock(&rsp->onoff_mutex);
2081
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2082

2083 2084
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2085
	rcu_adopt_orphan_cbs(rsp, flags);
2086

2087 2088 2089 2090
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2091
		smp_mb__after_unlock_lock();
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2109
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2110 2111
	 * held leads to deadlock.
	 */
2112
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2113 2114 2115 2116 2117 2118 2119
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2120 2121 2122
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2123 2124 2125
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2126
	mutex_unlock(&rsp->onoff_mutex);
2127 2128 2129 2130
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2131
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2132 2133 2134
{
}

2135
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2136 2137 2138 2139 2140 2141 2142 2143 2144
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2145
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2146 2147 2148
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2149 2150
	long bl, count, count_lazy;
	int i;
2151

2152
	/* If no callbacks are ready, just return. */
2153
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2154
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2155 2156 2157
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2158
		return;
2159
	}
2160 2161 2162 2163 2164 2165

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2166
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2167
	bl = rdp->blimit;
2168
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2169 2170 2171 2172
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2173 2174 2175
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2176 2177 2178
	local_irq_restore(flags);

	/* Invoke callbacks. */
2179
	count = count_lazy = 0;
2180 2181 2182
	while (list) {
		next = list->next;
		prefetch(next);
2183
		debug_rcu_head_unqueue(list);
2184 2185
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2186
		list = next;
2187 2188 2189 2190
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2191 2192 2193 2194
			break;
	}

	local_irq_save(flags);
2195 2196 2197
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2198 2199 2200 2201 2202

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2203 2204 2205
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2206 2207 2208
			else
				break;
	}
2209 2210
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2211
	ACCESS_ONCE(rdp->qlen) -= count;
2212
	rdp->n_cbs_invoked += count;
2213 2214 2215 2216 2217

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2218 2219 2220 2221 2222 2223
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2224
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2225

2226 2227
	local_irq_restore(flags);

2228
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2229
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2230
		invoke_rcu_core();
2231 2232 2233 2234 2235
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2236
 * Also schedule RCU core processing.
2237
 *
2238
 * This function must be called from hardirq context.  It is normally
2239 2240 2241 2242 2243
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2244
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2245
	increment_cpu_stall_ticks();
2246
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2247 2248 2249 2250 2251

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2252
		 * a quiescent state, so note it.
2253 2254
		 *
		 * No memory barrier is required here because both
2255 2256 2257
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2258 2259
		 */

2260 2261
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2262 2263 2264 2265 2266 2267 2268

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2269
		 * critical section, so note it.
2270 2271
		 */

2272
		rcu_bh_qs(cpu);
2273
	}
2274
	rcu_preempt_check_callbacks(cpu);
2275
	if (rcu_pending(cpu))
2276
		invoke_rcu_core();
2277
	trace_rcu_utilization(TPS("End scheduler-tick"));
2278 2279 2280 2281 2282
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2283 2284
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2285
 * The caller must have suppressed start of new grace periods.
2286
 */
2287 2288 2289 2290
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2291 2292 2293 2294 2295
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2296
	struct rcu_node *rnp;
2297

2298
	rcu_for_each_leaf_node(rsp, rnp) {
2299
		cond_resched();
2300
		mask = 0;
P
Paul E. McKenney 已提交
2301
		raw_spin_lock_irqsave(&rnp->lock, flags);
2302
		smp_mb__after_unlock_lock();
2303
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2304
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2305
			return;
2306
		}
2307
		if (rnp->qsmask == 0) {
2308
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2309 2310
			continue;
		}
2311
		cpu = rnp->grplo;
2312
		bit = 1;
2313
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2314 2315 2316 2317 2318 2319
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
					*isidle = 0;
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2320
		}
2321
		if (mask != 0) {
2322

P
Paul E. McKenney 已提交
2323 2324
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2325 2326
			continue;
		}
P
Paul E. McKenney 已提交
2327
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2328
	}
2329
	rnp = rcu_get_root(rsp);
2330 2331
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2332
		smp_mb__after_unlock_lock();
2333 2334
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2335 2336 2337 2338 2339 2340
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2341
static void force_quiescent_state(struct rcu_state *rsp)
2342 2343
{
	unsigned long flags;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2356
			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2357 2358 2359 2360 2361
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2362

2363 2364
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2365
	smp_mb__after_unlock_lock();
2366 2367
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2368
		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2369
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2370
		return;  /* Someone beat us to it. */
2371
	}
2372
	ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2373
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2374
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2375 2376 2377
}

/*
2378 2379 2380
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2381 2382
 */
static void
2383
__rcu_process_callbacks(struct rcu_state *rsp)
2384 2385
{
	unsigned long flags;
2386
	bool needwake;
2387
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2388

2389 2390
	WARN_ON_ONCE(rdp->beenonline == 0);

2391 2392 2393 2394
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2395
	local_irq_save(flags);
2396
	if (cpu_needs_another_gp(rsp, rdp)) {
2397
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2398
		needwake = rcu_start_gp(rsp);
2399
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2400 2401
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2402 2403
	} else {
		local_irq_restore(flags);
2404 2405 2406
	}

	/* If there are callbacks ready, invoke them. */
2407
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2408
		invoke_rcu_callbacks(rsp, rdp);
2409 2410 2411

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2412 2413
}

2414
/*
2415
 * Do RCU core processing for the current CPU.
2416
 */
2417
static void rcu_process_callbacks(struct softirq_action *unused)
2418
{
2419 2420
	struct rcu_state *rsp;

2421 2422
	if (cpu_is_offline(smp_processor_id()))
		return;
2423
	trace_rcu_utilization(TPS("Start RCU core"));
2424 2425
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2426
	trace_rcu_utilization(TPS("End RCU core"));
2427 2428
}

2429
/*
2430 2431 2432 2433 2434
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2435
 */
2436
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2437
{
2438 2439
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2440 2441
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2442 2443
		return;
	}
2444
	invoke_rcu_callbacks_kthread();
2445 2446
}

2447
static void invoke_rcu_core(void)
2448
{
2449 2450
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2451 2452
}

2453 2454 2455 2456 2457
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2458
{
2459 2460
	bool needwake;

2461 2462 2463 2464
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2465
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2466 2467
		invoke_rcu_core();

2468
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2469
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2470
		return;
2471

2472 2473 2474 2475 2476 2477 2478
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2479
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2480 2481

		/* Are we ignoring a completed grace period? */
2482
		note_gp_changes(rsp, rdp);
2483 2484 2485 2486 2487

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2488
			raw_spin_lock(&rnp_root->lock);
2489
			smp_mb__after_unlock_lock();
2490
			needwake = rcu_start_gp(rsp);
2491
			raw_spin_unlock(&rnp_root->lock);
2492 2493
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2494 2495 2496 2497 2498
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2499
				force_quiescent_state(rsp);
2500 2501 2502
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2503
	}
2504 2505
}

2506 2507 2508 2509 2510 2511 2512
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2513 2514 2515 2516 2517 2518
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2519 2520
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2521
	   struct rcu_state *rsp, int cpu, bool lazy)
2522 2523 2524 2525
{
	unsigned long flags;
	struct rcu_data *rdp;

2526
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2527 2528 2529 2530 2531 2532
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2543
	rdp = this_cpu_ptr(rsp->rda);
2544 2545

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2546 2547 2548 2549 2550
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2551
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2552
		WARN_ON_ONCE(offline);
2553 2554 2555 2556
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2557
	ACCESS_ONCE(rdp->qlen)++;
2558 2559
	if (lazy)
		rdp->qlen_lazy++;
2560 2561
	else
		rcu_idle_count_callbacks_posted();
2562 2563 2564
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2565

2566 2567
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2568
					 rdp->qlen_lazy, rdp->qlen);
2569
	else
2570
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2571

2572 2573
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2574 2575 2576 2577
	local_irq_restore(flags);
}

/*
2578
 * Queue an RCU-sched callback for invocation after a grace period.
2579
 */
2580
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2581
{
P
Paul E. McKenney 已提交
2582
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2583
}
2584
EXPORT_SYMBOL_GPL(call_rcu_sched);
2585 2586

/*
2587
 * Queue an RCU callback for invocation after a quicker grace period.
2588 2589 2590
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2591
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2592 2593 2594
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2606 2607
	int ret;

2608
	might_sleep();  /* Check for RCU read-side critical section. */
2609 2610 2611 2612
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2649 2650 2651 2652 2653 2654 2655 2656 2657
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2658 2659 2660 2661
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2662 2663
	if (rcu_blocking_is_gp())
		return;
2664 2665 2666 2667
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2679 2680 2681
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2682 2683 2684
 */
void synchronize_rcu_bh(void)
{
2685 2686 2687 2688
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2689 2690
	if (rcu_blocking_is_gp())
		return;
2691 2692 2693 2694
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2695 2696 2697
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
	return smp_load_acquire(&rcu_state->gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_state->completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2777
 *
2778 2779 2780 2781
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2806 2807
	long firstsnap, s, snap;
	int trycount = 0;
2808
	struct rcu_state *rsp = &rcu_sched_state;
2809

2810 2811 2812 2813 2814 2815 2816 2817
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2818 2819
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2820 2821
			 ULONG_MAX / 8)) {
		synchronize_sched();
2822
		atomic_long_inc(&rsp->expedited_wrap);
2823 2824
		return;
	}
2825

2826 2827 2828 2829
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2830
	snap = atomic_long_inc_return(&rsp->expedited_start);
2831
	firstsnap = snap;
2832
	get_online_cpus();
2833
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2834 2835 2836 2837 2838 2839 2840 2841 2842

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2843
		atomic_long_inc(&rsp->expedited_tryfail);
2844

2845
		/* Check to see if someone else did our work for us. */
2846
		s = atomic_long_read(&rsp->expedited_done);
2847
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2848 2849 2850
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2851 2852
			return;
		}
2853 2854

		/* No joy, try again later.  Or just synchronize_sched(). */
2855
		if (trycount++ < 10) {
2856
			udelay(trycount * num_online_cpus());
2857
		} else {
2858
			wait_rcu_gp(call_rcu_sched);
2859
			atomic_long_inc(&rsp->expedited_normal);
2860 2861 2862
			return;
		}

2863
		/* Recheck to see if someone else did our work for us. */
2864
		s = atomic_long_read(&rsp->expedited_done);
2865
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2866 2867 2868
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2869 2870 2871 2872 2873
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2874 2875 2876 2877
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2878 2879
		 */
		get_online_cpus();
2880
		snap = atomic_long_read(&rsp->expedited_start);
2881 2882
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2883
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2884 2885 2886 2887 2888

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2889
	 * than we did already did their update.
2890 2891
	 */
	do {
2892
		atomic_long_inc(&rsp->expedited_done_tries);
2893
		s = atomic_long_read(&rsp->expedited_done);
2894
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2895 2896 2897
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2898 2899
			break;
		}
2900
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2901
	atomic_long_inc(&rsp->expedited_done_exit);
2902 2903 2904 2905 2906

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2907 2908 2909 2910 2911 2912 2913 2914 2915
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2916 2917
	struct rcu_node *rnp = rdp->mynode;

2918 2919 2920 2921 2922
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

2923 2924 2925 2926
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

2927
	/* Is the RCU core waiting for a quiescent state from this CPU? */
2928 2929
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2930
		rdp->n_rp_qs_pending++;
2931
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2932
		rdp->n_rp_report_qs++;
2933
		return 1;
2934
	}
2935 2936

	/* Does this CPU have callbacks ready to invoke? */
2937 2938
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2939
		return 1;
2940
	}
2941 2942

	/* Has RCU gone idle with this CPU needing another grace period? */
2943 2944
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2945
		return 1;
2946
	}
2947 2948

	/* Has another RCU grace period completed?  */
2949
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2950
		rdp->n_rp_gp_completed++;
2951
		return 1;
2952
	}
2953 2954

	/* Has a new RCU grace period started? */
2955
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2956
		rdp->n_rp_gp_started++;
2957
		return 1;
2958
	}
2959

2960 2961 2962 2963 2964 2965
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

2966
	/* nothing to do */
2967
	rdp->n_rp_need_nothing++;
2968 2969 2970 2971 2972 2973 2974 2975
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2976
static int rcu_pending(int cpu)
2977
{
2978 2979 2980 2981 2982 2983
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2984 2985 2986
}

/*
2987 2988 2989
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
2990
 */
2991
static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2992
{
2993 2994 2995
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
2996 2997
	struct rcu_state *rsp;

2998 2999
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
3000 3001 3002 3003
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3004
			al = false;
3005 3006
			break;
		}
3007 3008 3009 3010
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3011 3012
}

3013 3014 3015 3016
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3017
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3018 3019 3020 3021 3022 3023
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3024 3025 3026 3027
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3028
static void rcu_barrier_callback(struct rcu_head *rhp)
3029
{
3030 3031 3032
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3033 3034
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3035
		complete(&rsp->barrier_completion);
3036 3037 3038
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3039 3040 3041 3042 3043 3044 3045
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3046
	struct rcu_state *rsp = type;
3047
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
3048

3049
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3050
	atomic_inc(&rsp->barrier_cpu_count);
3051
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3052 3053 3054 3055 3056 3057
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3058
static void _rcu_barrier(struct rcu_state *rsp)
3059
{
3060 3061
	int cpu;
	struct rcu_data *rdp;
3062 3063
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3064

3065
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3066

3067
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3068
	mutex_lock(&rsp->barrier_mutex);
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3082
	snap_done = rsp->n_barrier_done;
3083
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3096
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3109
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3110
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3111

3112
	/*
3113 3114
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3115 3116
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3117
	 */
3118
	init_completion(&rsp->barrier_completion);
3119
	atomic_set(&rsp->barrier_cpu_count, 1);
3120
	get_online_cpus();
3121 3122

	/*
3123 3124 3125
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3126
	 */
P
Paul E. McKenney 已提交
3127
	for_each_possible_cpu(cpu) {
3128
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3129
			continue;
3130
		rdp = per_cpu_ptr(rsp->rda, cpu);
3131
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
3132 3133 3134 3135 3136 3137
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
3138 3139
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3140
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3141
		} else {
3142 3143
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3144 3145
		}
	}
3146
	put_online_cpus();
3147 3148 3149 3150 3151

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3152
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3153
		complete(&rsp->barrier_completion);
3154

3155 3156 3157 3158
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3159
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3160 3161
	smp_mb(); /* Keep increment before caller's subsequent code. */

3162
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3163
	wait_for_completion(&rsp->barrier_completion);
3164 3165

	/* Other rcu_barrier() invocations can now safely proceed. */
3166
	mutex_unlock(&rsp->barrier_mutex);
3167 3168 3169 3170 3171 3172 3173
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3174
	_rcu_barrier(&rcu_bh_state);
3175 3176 3177 3178 3179 3180 3181 3182
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3183
	_rcu_barrier(&rcu_sched_state);
3184 3185 3186
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3187
/*
3188
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3189
 */
3190 3191
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3192 3193
{
	unsigned long flags;
3194
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3195 3196 3197
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3198
	raw_spin_lock_irqsave(&rnp->lock, flags);
3199
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3200
	init_callback_list(rdp);
3201
	rdp->qlen_lazy = 0;
3202
	ACCESS_ONCE(rdp->qlen) = 0;
3203
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3204
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3205
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3206
	rdp->cpu = cpu;
3207
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3208
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3209
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3210 3211 3212 3213 3214 3215 3216
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3217
 */
3218
static void
3219
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3220 3221 3222
{
	unsigned long flags;
	unsigned long mask;
3223
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3224 3225
	struct rcu_node *rnp = rcu_get_root(rsp);

3226 3227 3228
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3229
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3230
	raw_spin_lock_irqsave(&rnp->lock, flags);
3231
	rdp->beenonline = 1;	 /* We have now been online. */
3232 3233
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3234
	rdp->blimit = blimit;
3235
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3236
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3237
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3238 3239
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3240
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3241 3242 3243 3244 3245 3246

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3247
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3248 3249
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3250
		if (rnp == rdp->mynode) {
3251 3252 3253 3254 3255 3256
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3257
			rdp->completed = rnp->completed;
3258 3259
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3260
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3261
		}
P
Paul E. McKenney 已提交
3262
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3263 3264
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3265
	local_irq_restore(flags);
3266

3267
	mutex_unlock(&rsp->onoff_mutex);
3268 3269
}

3270
static void rcu_prepare_cpu(int cpu)
3271
{
3272 3273 3274
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3275
		rcu_init_percpu_data(cpu, rsp);
3276 3277 3278
}

/*
3279
 * Handle CPU online/offline notification events.
3280
 */
3281
static int rcu_cpu_notify(struct notifier_block *self,
3282
				    unsigned long action, void *hcpu)
3283 3284
{
	long cpu = (long)hcpu;
3285
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3286
	struct rcu_node *rnp = rdp->mynode;
3287
	struct rcu_state *rsp;
3288

3289
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3290 3291 3292
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3293 3294
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3295 3296
		break;
	case CPU_ONLINE:
3297
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3298
		rcu_boost_kthread_setaffinity(rnp, -1);
3299 3300
		break;
	case CPU_DOWN_PREPARE:
3301
		rcu_boost_kthread_setaffinity(rnp, cpu);
3302
		break;
3303 3304
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3305 3306
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3307
		break;
3308 3309 3310 3311
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3312 3313
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3314 3315 3316 3317
		break;
	default:
		break;
	}
3318
	trace_rcu_utilization(TPS("End CPU hotplug"));
3319
	return NOTIFY_OK;
3320 3321
}

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3352
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3353 3354 3355 3356 3357
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3358
		rcu_spawn_nocb_kthreads(rsp);
3359 3360 3361 3362 3363
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3379 3380 3381 3382 3383 3384 3385 3386 3387
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3388 3389
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3390 3391 3392 3393 3394 3395 3396 3397 3398
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3399
	cprv = nr_cpu_ids;
3400
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3411 3412
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3413
{
3414 3415 3416 3417 3418 3419 3420 3421
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3422 3423 3424 3425 3426
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3427 3428
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3429 3430 3431 3432
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3433 3434
	/* Initialize the level-tracking arrays. */

3435 3436 3437
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3438 3439 3440 3441 3442
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3443
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3444 3445 3446
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3447
			raw_spin_lock_init(&rnp->lock);
3448 3449
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3450 3451 3452
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3453 3454
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3472
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3473
			rcu_init_one_nocb(rnp);
3474 3475
		}
	}
3476

3477
	rsp->rda = rda;
3478
	init_waitqueue_head(&rsp->gp_wq);
3479
	rnp = rsp->level[rcu_num_lvls - 1];
3480
	for_each_possible_cpu(i) {
3481
		while (i > rnp->grphi)
3482
			rnp++;
3483
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3484 3485
		rcu_boot_init_percpu_data(i, rsp);
	}
3486
	list_add(&rsp->flavors, &rcu_struct_flavors);
3487 3488
}

3489 3490
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3491
 * replace the definitions in tree.h because those are needed to size
3492 3493 3494 3495
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3496
	ulong d;
3497 3498
	int i;
	int j;
3499
	int n = nr_cpu_ids;
3500 3501
	int rcu_capacity[MAX_RCU_LVLS + 1];

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3515
	/* If the compile-time values are accurate, just leave. */
3516 3517
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3518
		return;
3519 3520
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3566
void __init rcu_init(void)
3567
{
P
Paul E. McKenney 已提交
3568
	int cpu;
3569

3570
	rcu_bootup_announce();
3571
	rcu_init_geometry();
3572
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3573
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3574
	__rcu_init_preempt();
J
Jiang Fang 已提交
3575
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3576 3577 3578 3579 3580 3581 3582

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3583
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3584 3585
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3586 3587
}

3588
#include "tree_plugin.h"