tree.c 109.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 84
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85
struct rcu_state sname##_state = { \
86
	.level = { &sname##_state.node[0] }, \
87
	.call = cr, \
88
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
89 90
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
91
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 93
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
94
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96
	.name = sname##_varname, \
97
	.abbr = sabbr, \
98 99
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
100

101 102
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103

104
static struct rcu_state *rcu_state;
105
LIST_HEAD(rcu_struct_flavors);
106

107 108
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109
module_param(rcu_fanout_leaf, int, 0444);
110 111 112 113 114 115 116 117 118 119
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

120 121 122 123
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
124
 * optimize synchronize_sched() to a simple barrier().  When this variable
125 126 127 128
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
129 130 131
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

146 147
#ifdef CONFIG_RCU_BOOST

148 149 150 151 152
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155
DEFINE_PER_CPU(char, rcu_cpu_has_work);
156

157 158
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
159
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 161
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

175 176 177 178 179 180 181 182 183 184
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

185
/*
186
 * Note a quiescent state.  Because we do not need to know
187
 * how many quiescent states passed, just if there was at least
188
 * one since the start of the grace period, this just sets a flag.
189
 * The caller must have disabled preemption.
190
 */
191
void rcu_sched_qs(int cpu)
192
{
193
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194

195
	if (rdp->passed_quiesce == 0)
196
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197
	rdp->passed_quiesce = 1;
198 199
}

200
void rcu_bh_qs(int cpu)
201
{
202
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203

204
	if (rdp->passed_quiesce == 0)
205
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206
	rdp->passed_quiesce = 1;
207
}
208

209 210 211
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
212
 * The caller must have disabled preemption.
213 214 215
 */
void rcu_note_context_switch(int cpu)
{
216
	trace_rcu_utilization(TPS("Start context switch"));
217
	rcu_sched_qs(cpu);
218
	rcu_preempt_note_context_switch(cpu);
219
	trace_rcu_utilization(TPS("End context switch"));
220
}
221
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222

223
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225
	.dynticks = ATOMIC_INIT(1),
226 227 228 229
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230
};
231

E
Eric Dumazet 已提交
232 233 234
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
235

E
Eric Dumazet 已提交
236 237 238
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
239

240 241
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
242 243 244 245

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

246 247
static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
				  struct rcu_data *rdp);
248 249 250 251
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
252
static void force_quiescent_state(struct rcu_state *rsp);
253
static int rcu_pending(int cpu);
254 255

/*
256
 * Return the number of RCU-sched batches processed thus far for debug & stats.
257
 */
258
long rcu_batches_completed_sched(void)
259
{
260
	return rcu_sched_state.completed;
261
}
262
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263 264 265 266 267 268 269 270 271 272

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

273 274 275 276 277
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
278
	force_quiescent_state(&rcu_bh_state);
279 280 281
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

307 308 309 310 311
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
312
	force_quiescent_state(&rcu_sched_state);
313 314 315
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

316 317 318 319 320 321
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
322 323
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
324 325 326
}

/*
327 328 329
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
330 331 332 333
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
334
	int i;
P
Paul E. McKenney 已提交
335

336 337
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
338
	if (rcu_nocb_needs_gp(rsp))
339
		return 1;  /* Yes, a no-CBs CPU needs one. */
340 341 342 343 344 345 346 347 348 349
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
350 351 352 353 354 355 356 357 358 359
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

360
/*
361
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
362 363 364 365 366
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
367 368
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
369
{
370 371 372
	struct rcu_state *rsp;
	struct rcu_data *rdp;

373
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
374
	if (!user && !is_idle_task(current)) {
375 376
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
377

378
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
379
		ftrace_dump(DUMP_ORIG);
380 381 382
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
383
	}
384 385 386 387
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
388
	rcu_prepare_for_idle(smp_processor_id());
389 390 391 392 393
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
394 395

	/*
396
	 * It is illegal to enter an extended quiescent state while
397 398 399 400 401 402 403 404
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
405
}
406

407 408 409
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
410
 */
411
static void rcu_eqs_enter(bool user)
412
{
413
	long long oldval;
414 415
	struct rcu_dynticks *rdtp;

416
	rdtp = this_cpu_ptr(&rcu_dynticks);
417
	oldval = rdtp->dynticks_nesting;
418
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
419
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
420
		rdtp->dynticks_nesting = 0;
421 422
		rcu_eqs_enter_common(rdtp, oldval, user);
	} else {
423
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
424
	}
425
}
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
441 442 443
	unsigned long flags;

	local_irq_save(flags);
444
	rcu_eqs_enter(false);
445
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
446
	local_irq_restore(flags);
447
}
448
EXPORT_SYMBOL_GPL(rcu_idle_enter);
449

450
#ifdef CONFIG_RCU_USER_QS
451 452 453 454 455 456 457 458 459 460
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
461
	rcu_eqs_enter(1);
462
}
463
#endif /* CONFIG_RCU_USER_QS */
464

465 466 467 468 469 470
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
471
 *
472 473 474 475 476 477 478 479
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
480
 */
481
void rcu_irq_exit(void)
482 483
{
	unsigned long flags;
484
	long long oldval;
485 486 487
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
488
	rdtp = this_cpu_ptr(&rcu_dynticks);
489
	oldval = rdtp->dynticks_nesting;
490 491
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
492
	if (rdtp->dynticks_nesting)
493
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
494
	else
495
		rcu_eqs_enter_common(rdtp, oldval, true);
496
	rcu_sysidle_enter(rdtp, 1);
497 498 499 500
	local_irq_restore(flags);
}

/*
501
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502 503 504 505 506
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
507 508
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
509
{
510 511 512 513 514
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515
	rcu_cleanup_after_idle(smp_processor_id());
516
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
517
	if (!user && !is_idle_task(current)) {
518 519
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
520

521
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
522
				  oldval, rdtp->dynticks_nesting);
523
		ftrace_dump(DUMP_ORIG);
524 525 526
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
527 528 529
	}
}

530 531 532
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
533
 */
534
static void rcu_eqs_exit(bool user)
535 536 537 538
{
	struct rcu_dynticks *rdtp;
	long long oldval;

539
	rdtp = this_cpu_ptr(&rcu_dynticks);
540
	oldval = rdtp->dynticks_nesting;
541
	WARN_ON_ONCE(oldval < 0);
542
	if (oldval & DYNTICK_TASK_NEST_MASK) {
543
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
544
	} else {
545
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
546 547
		rcu_eqs_exit_common(rdtp, oldval, user);
	}
548
}
549 550 551 552 553 554 555 556 557 558 559 560 561 562

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
563 564 565
	unsigned long flags;

	local_irq_save(flags);
566
	rcu_eqs_exit(false);
567
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
568
	local_irq_restore(flags);
569
}
570
EXPORT_SYMBOL_GPL(rcu_idle_exit);
571

572
#ifdef CONFIG_RCU_USER_QS
573 574 575 576 577 578 579 580
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
581
	rcu_eqs_exit(1);
582
}
583
#endif /* CONFIG_RCU_USER_QS */
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
611
	rdtp = this_cpu_ptr(&rcu_dynticks);
612 613 614
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
615
	if (oldval)
616
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
617
	else
618
		rcu_eqs_exit_common(rdtp, oldval, true);
619
	rcu_sysidle_exit(rdtp, 1);
620 621 622 623 624 625 626 627 628 629 630 631
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
632
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633

634 635
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
636
		return;
637 638 639 640 641 642
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
643 644 645 646 647 648 649 650 651 652 653
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
654
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
655

656 657
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
658
		return;
659 660 661 662 663
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
664 665 666
}

/**
667 668 669 670 671 672 673
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
674
bool notrace __rcu_is_watching(void)
675 676 677 678 679 680
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
681
 *
682
 * If the current CPU is in its idle loop and is neither in an interrupt
683
 * or NMI handler, return true.
684
 */
685
bool notrace rcu_is_watching(void)
686
{
687 688 689
	int ret;

	preempt_disable();
690
	ret = __rcu_is_watching();
691 692
	preempt_enable();
	return ret;
693
}
694
EXPORT_SYMBOL_GPL(rcu_is_watching);
695

696
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
697 698 699 700 701 702 703

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
704 705 706 707 708 709 710 711 712 713 714
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
715 716 717 718 719 720
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
721 722
	struct rcu_data *rdp;
	struct rcu_node *rnp;
723 724 725
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
726
		return true;
727
	preempt_disable();
728
	rdp = this_cpu_ptr(&rcu_sched_data);
729 730
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
731 732 733 734 735 736
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

737
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
738

739
/**
740
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
741
 *
742 743 744
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
745
 */
746
static int rcu_is_cpu_rrupt_from_idle(void)
747
{
748
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
749 750 751 752 753
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
754
 * is in dynticks idle mode, which is an extended quiescent state.
755
 */
756 757
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
758
{
759
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
760
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
761
	return (rdp->dynticks_snap & 0x1) == 0;
762 763
}

764 765 766 767 768 769
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

770 771 772 773
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
774
 * for this same CPU, or by virtue of having been offline.
775
 */
776 777
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
778
{
779 780
	unsigned int curr;
	unsigned int snap;
781

782 783
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
784 785 786 787 788 789 790 791 792

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
793
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
794
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
795 796 797 798
		rdp->dynticks_fqs++;
		return 1;
	}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
814
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
815 816 817
		rdp->offline_fqs++;
		return 1;
	}
818 819 820 821 822 823 824 825 826 827

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

828 829 830 831 832 833 834 835 836 837
	/*
	 * Alternatively, the CPU might be running in the kernel
	 * for an extended period of time without a quiescent state.
	 * Attempt to force the CPU through the scheduler to gain the
	 * needed quiescent state, but only if the grace period has gone
	 * on for an uncommonly long time.  If there are many stuck CPUs,
	 * we will beat on the first one until it gets unstuck, then move
	 * to the next.  Only do this for the primary flavor of RCU.
	 */
	if (rdp->rsp == rcu_state &&
838
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
839 840 841 842
		rdp->rsp->jiffies_resched += 5;
		resched_cpu(rdp->cpu);
	}

843
	return 0;
844 845 846 847
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
848
	unsigned long j = jiffies;
849
	unsigned long j1;
850 851 852

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
853 854 855
	j1 = rcu_jiffies_till_stall_check();
	rsp->jiffies_stall = j + j1;
	rsp->jiffies_resched = j + j1 / 2;
856 857
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

881 882 883 884 885
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
886
	int ndetected = 0;
887
	struct rcu_node *rnp = rcu_get_root(rsp);
888
	long totqlen = 0;
889 890 891

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
892
	raw_spin_lock_irqsave(&rnp->lock, flags);
893
	delta = jiffies - rsp->jiffies_stall;
894
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
895
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
896 897
		return;
	}
898
	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
899
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
900

901 902 903 904 905
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
906
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
907
	       rsp->name);
908
	print_cpu_stall_info_begin();
909
	rcu_for_each_leaf_node(rsp, rnp) {
910
		raw_spin_lock_irqsave(&rnp->lock, flags);
911
		ndetected += rcu_print_task_stall(rnp);
912 913 914 915 916 917 918 919
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
920
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
921
	}
922 923 924 925 926 927 928

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
929
	ndetected += rcu_print_task_stall(rnp);
930 931 932
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
933 934
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
935
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
936
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
937
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
938
	if (ndetected == 0)
939
		pr_err("INFO: Stall ended before state dump start\n");
940
	else if (!trigger_all_cpu_backtrace())
941
		rcu_dump_cpu_stacks(rsp);
942

943
	/* Complain about tasks blocking the grace period. */
944 945 946

	rcu_print_detail_task_stall(rsp);

947
	force_quiescent_state(rsp);  /* Kick them all. */
948 949
}

950 951 952 953 954 955
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

956 957
static void print_cpu_stall(struct rcu_state *rsp)
{
958
	int cpu;
959 960
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
961
	long totqlen = 0;
962

963 964 965 966 967
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
968
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
969 970 971
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
972 973
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
974 975 976
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
977 978
	if (!trigger_all_cpu_backtrace())
		dump_stack();
979

P
Paul E. McKenney 已提交
980
	raw_spin_lock_irqsave(&rnp->lock, flags);
981
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
982
		rsp->jiffies_stall = jiffies +
983
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
984
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
985

986 987 988 989 990 991 992 993
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
994 995 996 997
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
998 999 1000
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1001 1002
	unsigned long j;
	unsigned long js;
1003 1004
	struct rcu_node *rnp;

1005
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1006
		return;
1007
	j = jiffies;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1028
	js = ACCESS_ONCE(rsp->jiffies_stall);
1029 1030 1031 1032 1033 1034 1035 1036
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1037
	rnp = rdp->mynode;
1038
	if (rcu_gp_in_progress(rsp) &&
1039
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1040 1041 1042 1043

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1044 1045
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1046

1047
		/* They had a few time units to dump stack, so complain. */
1048 1049 1050 1051
		print_other_cpu_stall(rsp);
	}
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1063 1064 1065 1066
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1067 1068
}

1069 1070 1071 1072 1073 1074 1075
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1076 1077
	if (init_nocb_callback_list(rdp))
		return;
1078 1079 1080 1081 1082
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1112 1113 1114 1115 1116
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1117
				unsigned long c, const char *s)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->need_future_gp field.
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
{
	unsigned long c;
	int i;
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1143
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1144
	if (rnp->need_future_gp[c & 0x1]) {
1145
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		return c;
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
1159
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1160 1161 1162 1163 1164 1165 1166 1167
		return c;
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1168
	if (rnp != rnp_root) {
1169
		raw_spin_lock(&rnp_root->lock);
1170 1171
		smp_mb__after_unlock_lock();
	}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1189
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1190 1191 1192 1193 1194 1195 1196 1197
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1198
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1199
	} else {
1200
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1201
		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
	return c;
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1224 1225
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1226 1227 1228
	return needmore;
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
 * not hurt to call it repeatedly.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
		return;

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1288 1289
	/* Record any needed additional grace periods. */
	rcu_start_future_gp(rnp, rdp);
1290 1291 1292

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1293
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1294
	else
1295
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
	rcu_accelerate_cbs(rsp, rnp, rdp);
}

1341
/*
1342 1343 1344
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1345
 */
1346
static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1347
{
1348
	/* Handle the ends of any preceding grace periods first. */
1349
	if (rdp->completed == rnp->completed) {
1350

1351
		/* No grace period end, so just accelerate recent callbacks. */
1352
		rcu_accelerate_cbs(rsp, rnp, rdp);
1353

1354 1355 1356 1357
	} else {

		/* Advance callbacks. */
		rcu_advance_cbs(rsp, rnp, rdp);
1358 1359 1360

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1361
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1362
	}
1363

1364 1365 1366 1367 1368 1369 1370
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1371
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1372 1373 1374 1375 1376 1377
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
}

1378
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1379 1380 1381 1382 1383 1384
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1385 1386
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1387 1388 1389 1390
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1391
	smp_mb__after_unlock_lock();
1392
	__note_gp_changes(rsp, rnp, rdp);
1393 1394 1395
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

1396
/*
1397
 * Initialize a new grace period.  Return 0 if no grace period required.
1398
 */
1399
static int rcu_gp_init(struct rcu_state *rsp)
1400 1401
{
	struct rcu_data *rdp;
1402
	struct rcu_node *rnp = rcu_get_root(rsp);
1403

1404
	rcu_bind_gp_kthread();
1405
	raw_spin_lock_irq(&rnp->lock);
1406
	smp_mb__after_unlock_lock();
1407
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1408 1409 1410 1411
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1412
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1413

1414 1415 1416 1417 1418
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1419 1420 1421 1422 1423
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1424
	record_gp_stall_check_time(rsp);
1425 1426
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1427
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1428 1429 1430
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1431
	mutex_lock(&rsp->onoff_mutex);
1432
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1448
		raw_spin_lock_irq(&rnp->lock);
1449
		smp_mb__after_unlock_lock();
1450
		rdp = this_cpu_ptr(rsp->rda);
1451 1452
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1453
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1454
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1455
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1456
		if (rnp == rdp->mynode)
1457
			__note_gp_changes(rsp, rnp, rdp);
1458 1459 1460 1461 1462
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1463
#ifdef CONFIG_PROVE_RCU_DELAY
1464
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1465
		    system_state == SYSTEM_RUNNING)
1466
			udelay(200);
1467
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1468 1469
		cond_resched();
	}
1470

1471
	mutex_unlock(&rsp->onoff_mutex);
1472 1473
	return 1;
}
1474

1475 1476 1477
/*
 * Do one round of quiescent-state forcing.
 */
1478
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1479 1480
{
	int fqs_state = fqs_state_in;
1481 1482
	bool isidle = false;
	unsigned long maxj;
1483 1484 1485 1486 1487
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1488 1489 1490 1491
		if (is_sysidle_rcu_state(rsp)) {
			isidle = 1;
			maxj = jiffies - ULONG_MAX / 4;
		}
1492 1493
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1494
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1495 1496 1497
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1498
		isidle = 0;
1499
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1500 1501 1502 1503
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1504
		smp_mb__after_unlock_lock();
1505
		ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1506 1507 1508 1509 1510
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1511 1512 1513
/*
 * Clean up after the old grace period.
 */
1514
static void rcu_gp_cleanup(struct rcu_state *rsp)
1515 1516
{
	unsigned long gp_duration;
1517
	int nocb = 0;
1518 1519
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1520

1521
	raw_spin_lock_irq(&rnp->lock);
1522
	smp_mb__after_unlock_lock();
1523 1524 1525
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1526

1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1535
	raw_spin_unlock_irq(&rnp->lock);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1547
		raw_spin_lock_irq(&rnp->lock);
1548
		smp_mb__after_unlock_lock();
1549
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1550 1551
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1552
			__note_gp_changes(rsp, rnp, rdp);
1553
		/* smp_mb() provided by prior unlock-lock pair. */
1554
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1555 1556
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1557
	}
1558 1559
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1560
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1561
	rcu_nocb_gp_set(rnp, nocb);
1562

1563 1564
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1565
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1566
	rsp->fqs_state = RCU_GP_IDLE;
1567
	rdp = this_cpu_ptr(rsp->rda);
1568
	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1569
	if (cpu_needs_another_gp(rsp, rdp)) {
1570
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1571 1572 1573 1574
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1575 1576 1577 1578 1579 1580 1581 1582
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1583
	int fqs_state;
1584
	int gf;
1585
	unsigned long j;
1586
	int ret;
1587 1588 1589 1590 1591 1592 1593
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1594 1595 1596
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1597
			wait_event_interruptible(rsp->gp_wq,
1598
						 ACCESS_ONCE(rsp->gp_flags) &
1599
						 RCU_GP_FLAG_INIT);
1600
			/* Locking provides needed memory barrier. */
1601
			if (rcu_gp_init(rsp))
1602 1603 1604
				break;
			cond_resched();
			flush_signals(current);
1605 1606 1607
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1608
		}
1609

1610 1611
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1612 1613 1614 1615 1616
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1617
		ret = 0;
1618
		for (;;) {
1619 1620
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1621 1622 1623
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1624
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1625 1626
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1627 1628
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1629
					j);
1630
			/* Locking provides needed memory barriers. */
1631
			/* If grace period done, leave loop. */
1632
			if (!ACCESS_ONCE(rnp->qsmask) &&
1633
			    !rcu_preempt_blocked_readers_cgp(rnp))
1634
				break;
1635
			/* If time for quiescent-state forcing, do it. */
1636 1637
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1638 1639 1640
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1641
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1642 1643 1644
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1645 1646 1647 1648 1649
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1650 1651 1652
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1653
			}
1654 1655 1656 1657 1658 1659 1660 1661
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1662
		}
1663 1664 1665

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1666 1667 1668
	}
}

1669 1670 1671 1672 1673 1674 1675 1676
static void rsp_wakeup(struct irq_work *work)
{
	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);

	/* Wake up rcu_gp_kthread() to start the grace period. */
	wake_up(&rsp->gp_wq);
}

1677 1678 1679
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1680
 * the root node's ->lock and hard irqs must be disabled.
1681 1682 1683 1684
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1685 1686
 */
static void
1687 1688
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1689
{
1690
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1691
		/*
1692
		 * Either we have not yet spawned the grace-period
1693 1694
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1695
		 * Either way, don't start a new grace period.
1696 1697 1698
		 */
		return;
	}
1699
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1700 1701
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1702

1703 1704
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1705 1706 1707
	 * could cause possible deadlocks with the rq->lock. Defer
	 * the wakeup to interrupt context.  And don't bother waking
	 * up the running kthread.
1708
	 */
1709 1710
	if (current != rsp->gp_kthread)
		irq_work_queue(&rsp->wakeup_work);
1711 1712
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
 */
static void
rcu_start_gp(struct rcu_state *rsp)
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
	rcu_advance_cbs(rsp, rnp, rdp);
	rcu_start_gp_advanced(rsp, rnp, rdp);
}

1738
/*
P
Paul E. McKenney 已提交
1739 1740 1741
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1742 1743
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1744
 */
P
Paul E. McKenney 已提交
1745
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1746
	__releases(rcu_get_root(rsp)->lock)
1747
{
1748
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1749 1750
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1751 1752
}

1753
/*
P
Paul E. McKenney 已提交
1754 1755 1756 1757 1758 1759
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1760 1761
 */
static void
P
Paul E. McKenney 已提交
1762 1763
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1764 1765
	__releases(rnp->lock)
{
1766 1767
	struct rcu_node *rnp_c;

1768 1769 1770 1771 1772
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1773
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1774 1775 1776
			return;
		}
		rnp->qsmask &= ~mask;
1777 1778 1779 1780
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1781
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1782 1783

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1784
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1785 1786 1787 1788 1789 1790 1791 1792 1793
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1794
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1795
		rnp_c = rnp;
1796
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1797
		raw_spin_lock_irqsave(&rnp->lock, flags);
1798
		smp_mb__after_unlock_lock();
1799
		WARN_ON_ONCE(rnp_c->qsmask);
1800 1801 1802 1803
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1804
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1805
	 * to clean up and start the next grace period if one is needed.
1806
	 */
P
Paul E. McKenney 已提交
1807
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1808 1809 1810
}

/*
P
Paul E. McKenney 已提交
1811 1812 1813 1814 1815 1816 1817
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1818 1819
 */
static void
1820
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1821 1822 1823 1824 1825 1826
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1827
	raw_spin_lock_irqsave(&rnp->lock, flags);
1828
	smp_mb__after_unlock_lock();
1829 1830
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1831 1832

		/*
1833 1834 1835 1836
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1837
		 */
1838
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1839
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1840 1841 1842 1843
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1844
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1845 1846 1847 1848 1849 1850 1851
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1852
		rcu_accelerate_cbs(rsp, rnp, rdp);
1853

P
Paul E. McKenney 已提交
1854
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
1867 1868
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1881
	if (!rdp->passed_quiesce)
1882 1883
		return;

P
Paul E. McKenney 已提交
1884 1885 1886 1887
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1888
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1889 1890 1891 1892
}

#ifdef CONFIG_HOTPLUG_CPU

1893
/*
1894 1895
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1896
 * ->orphan_lock.
1897
 */
1898 1899 1900
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1901
{
P
Paul E. McKenney 已提交
1902
	/* No-CBs CPUs do not have orphanable callbacks. */
1903
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1904 1905
		return;

1906 1907
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1908 1909
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1910
	 */
1911
	if (rdp->nxtlist != NULL) {
1912 1913 1914
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1915
		rdp->qlen_lazy = 0;
1916
		ACCESS_ONCE(rdp->qlen) = 0;
1917 1918 1919
	}

	/*
1920 1921 1922 1923 1924 1925 1926
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1927
	 */
1928 1929 1930 1931
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1932 1933 1934
	}

	/*
1935 1936 1937
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1938
	 */
1939
	if (rdp->nxtlist != NULL) {
1940 1941
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1942
	}
1943

1944
	/* Finally, initialize the rcu_data structure's list to empty.  */
1945
	init_callback_list(rdp);
1946 1947 1948 1949
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1950
 * orphanage.  The caller must hold the ->orphan_lock.
1951
 */
1952
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1953 1954 1955 1956
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1957
	/* No-CBs CPUs are handled specially. */
1958
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
1959 1960
		return;

1961 1962 1963 1964
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1965 1966
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2006 2007
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2008
			       TPS("cpuofl"));
2009 2010 2011
}

/*
2012
 * The CPU has been completely removed, and some other CPU is reporting
2013 2014
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2015 2016
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2017
 */
2018
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2019
{
2020 2021 2022
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2023
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2024
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2025

2026
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2027
	rcu_boost_kthread_setaffinity(rnp, -1);
2028

2029
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2030 2031

	/* Exclude any attempts to start a new grace period. */
2032
	mutex_lock(&rsp->onoff_mutex);
2033
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2034

2035 2036
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2037
	rcu_adopt_orphan_cbs(rsp, flags);
2038

2039 2040 2041 2042
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2043
		smp_mb__after_unlock_lock();
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2061
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2062 2063
	 * held leads to deadlock.
	 */
2064
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2065 2066 2067 2068 2069 2070 2071
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2072 2073 2074
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2075 2076 2077
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2078
	mutex_unlock(&rsp->onoff_mutex);
2079 2080 2081 2082
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2083
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2084 2085 2086
{
}

2087
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2088 2089 2090 2091 2092 2093 2094 2095 2096
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2097
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2098 2099 2100
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2101 2102
	long bl, count, count_lazy;
	int i;
2103

2104
	/* If no callbacks are ready, just return. */
2105
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2106
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2107 2108 2109
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2110
		return;
2111
	}
2112 2113 2114 2115 2116 2117

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2118
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2119
	bl = rdp->blimit;
2120
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2121 2122 2123 2124
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2125 2126 2127
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2128 2129 2130
	local_irq_restore(flags);

	/* Invoke callbacks. */
2131
	count = count_lazy = 0;
2132 2133 2134
	while (list) {
		next = list->next;
		prefetch(next);
2135
		debug_rcu_head_unqueue(list);
2136 2137
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2138
		list = next;
2139 2140 2141 2142
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2143 2144 2145 2146
			break;
	}

	local_irq_save(flags);
2147 2148 2149
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2150 2151 2152 2153 2154

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2155 2156 2157
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2158 2159 2160
			else
				break;
	}
2161 2162
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2163
	ACCESS_ONCE(rdp->qlen) -= count;
2164
	rdp->n_cbs_invoked += count;
2165 2166 2167 2168 2169

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2170 2171 2172 2173 2174 2175
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2176
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2177

2178 2179
	local_irq_restore(flags);

2180
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2181
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2182
		invoke_rcu_core();
2183 2184 2185 2186 2187
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2188
 * Also schedule RCU core processing.
2189
 *
2190
 * This function must be called from hardirq context.  It is normally
2191 2192 2193 2194 2195
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2196
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2197
	increment_cpu_stall_ticks();
2198
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2199 2200 2201 2202 2203

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2204
		 * a quiescent state, so note it.
2205 2206
		 *
		 * No memory barrier is required here because both
2207 2208 2209
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2210 2211
		 */

2212 2213
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2214 2215 2216 2217 2218 2219 2220

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2221
		 * critical section, so note it.
2222 2223
		 */

2224
		rcu_bh_qs(cpu);
2225
	}
2226
	rcu_preempt_check_callbacks(cpu);
2227
	if (rcu_pending(cpu))
2228
		invoke_rcu_core();
2229
	trace_rcu_utilization(TPS("End scheduler-tick"));
2230 2231 2232 2233 2234
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2235 2236
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2237
 * The caller must have suppressed start of new grace periods.
2238
 */
2239 2240 2241 2242
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2243 2244 2245 2246 2247
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2248
	struct rcu_node *rnp;
2249

2250
	rcu_for_each_leaf_node(rsp, rnp) {
2251
		cond_resched();
2252
		mask = 0;
P
Paul E. McKenney 已提交
2253
		raw_spin_lock_irqsave(&rnp->lock, flags);
2254
		smp_mb__after_unlock_lock();
2255
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2256
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2257
			return;
2258
		}
2259
		if (rnp->qsmask == 0) {
2260
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2261 2262
			continue;
		}
2263
		cpu = rnp->grplo;
2264
		bit = 1;
2265
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2266 2267 2268 2269 2270 2271
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
					*isidle = 0;
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2272
		}
2273
		if (mask != 0) {
2274

P
Paul E. McKenney 已提交
2275 2276
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2277 2278
			continue;
		}
P
Paul E. McKenney 已提交
2279
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2280
	}
2281
	rnp = rcu_get_root(rsp);
2282 2283
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2284
		smp_mb__after_unlock_lock();
2285 2286
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2287 2288 2289 2290 2291 2292
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2293
static void force_quiescent_state(struct rcu_state *rsp)
2294 2295
{
	unsigned long flags;
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2308
			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2309 2310 2311 2312 2313
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2314

2315 2316
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2317
	smp_mb__after_unlock_lock();
2318 2319
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2320
		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2321
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2322
		return;  /* Someone beat us to it. */
2323
	}
2324
	ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2325
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2326
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2327 2328 2329
}

/*
2330 2331 2332
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2333 2334
 */
static void
2335
__rcu_process_callbacks(struct rcu_state *rsp)
2336 2337
{
	unsigned long flags;
2338
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2339

2340 2341
	WARN_ON_ONCE(rdp->beenonline == 0);

2342 2343 2344 2345
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2346
	local_irq_save(flags);
2347
	if (cpu_needs_another_gp(rsp, rdp)) {
2348
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2349 2350
		rcu_start_gp(rsp);
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2351 2352
	} else {
		local_irq_restore(flags);
2353 2354 2355
	}

	/* If there are callbacks ready, invoke them. */
2356
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2357
		invoke_rcu_callbacks(rsp, rdp);
2358 2359 2360

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2361 2362
}

2363
/*
2364
 * Do RCU core processing for the current CPU.
2365
 */
2366
static void rcu_process_callbacks(struct softirq_action *unused)
2367
{
2368 2369
	struct rcu_state *rsp;

2370 2371
	if (cpu_is_offline(smp_processor_id()))
		return;
2372
	trace_rcu_utilization(TPS("Start RCU core"));
2373 2374
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2375
	trace_rcu_utilization(TPS("End RCU core"));
2376 2377
}

2378
/*
2379 2380 2381 2382 2383
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2384
 */
2385
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2386
{
2387 2388
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2389 2390
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2391 2392
		return;
	}
2393
	invoke_rcu_callbacks_kthread();
2394 2395
}

2396
static void invoke_rcu_core(void)
2397
{
2398 2399
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2400 2401
}

2402 2403 2404 2405 2406
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2407
{
2408 2409 2410 2411
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2412
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2413 2414
		invoke_rcu_core();

2415
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2416
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2417
		return;
2418

2419 2420 2421 2422 2423 2424 2425
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2426
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2427 2428

		/* Are we ignoring a completed grace period? */
2429
		note_gp_changes(rsp, rdp);
2430 2431 2432 2433 2434

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2435
			raw_spin_lock(&rnp_root->lock);
2436
			smp_mb__after_unlock_lock();
2437 2438
			rcu_start_gp(rsp);
			raw_spin_unlock(&rnp_root->lock);
2439 2440 2441 2442 2443
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2444
				force_quiescent_state(rsp);
2445 2446 2447
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2448
	}
2449 2450
}

2451 2452 2453 2454 2455 2456 2457
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2458 2459 2460 2461 2462 2463
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2464 2465
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2466
	   struct rcu_state *rsp, int cpu, bool lazy)
2467 2468 2469 2470
{
	unsigned long flags;
	struct rcu_data *rdp;

2471
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2472 2473 2474 2475 2476 2477
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2488
	rdp = this_cpu_ptr(rsp->rda);
2489 2490

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2491 2492 2493 2494 2495
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2496
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2497
		WARN_ON_ONCE(offline);
2498 2499 2500 2501
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2502
	ACCESS_ONCE(rdp->qlen)++;
2503 2504
	if (lazy)
		rdp->qlen_lazy++;
2505 2506
	else
		rcu_idle_count_callbacks_posted();
2507 2508 2509
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2510

2511 2512
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2513
					 rdp->qlen_lazy, rdp->qlen);
2514
	else
2515
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2516

2517 2518
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2519 2520 2521 2522
	local_irq_restore(flags);
}

/*
2523
 * Queue an RCU-sched callback for invocation after a grace period.
2524
 */
2525
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2526
{
P
Paul E. McKenney 已提交
2527
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2528
}
2529
EXPORT_SYMBOL_GPL(call_rcu_sched);
2530 2531

/*
2532
 * Queue an RCU callback for invocation after a quicker grace period.
2533 2534 2535
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2536
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2537 2538 2539
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2551 2552
	int ret;

2553
	might_sleep();  /* Check for RCU read-side critical section. */
2554 2555 2556 2557
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2558 2559
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2594 2595 2596 2597 2598 2599 2600 2601 2602
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2603 2604 2605 2606
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2607 2608
	if (rcu_blocking_is_gp())
		return;
2609 2610 2611 2612
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2624 2625 2626
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2627 2628 2629
 */
void synchronize_rcu_bh(void)
{
2630 2631 2632 2633
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2634 2635
	if (rcu_blocking_is_gp())
		return;
2636 2637 2638 2639
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2640 2641 2642
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
	return smp_load_acquire(&rcu_state->gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_state->completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2722
 *
2723 2724 2725 2726
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2751 2752
	long firstsnap, s, snap;
	int trycount = 0;
2753
	struct rcu_state *rsp = &rcu_sched_state;
2754

2755 2756 2757 2758 2759 2760 2761 2762
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2763 2764
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2765 2766
			 ULONG_MAX / 8)) {
		synchronize_sched();
2767
		atomic_long_inc(&rsp->expedited_wrap);
2768 2769
		return;
	}
2770

2771 2772 2773 2774
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2775
	snap = atomic_long_inc_return(&rsp->expedited_start);
2776
	firstsnap = snap;
2777
	get_online_cpus();
2778
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2779 2780 2781 2782 2783 2784 2785 2786 2787

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2788
		atomic_long_inc(&rsp->expedited_tryfail);
2789

2790
		/* Check to see if someone else did our work for us. */
2791
		s = atomic_long_read(&rsp->expedited_done);
2792
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2793 2794 2795
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2796 2797
			return;
		}
2798 2799

		/* No joy, try again later.  Or just synchronize_sched(). */
2800
		if (trycount++ < 10) {
2801
			udelay(trycount * num_online_cpus());
2802
		} else {
2803
			wait_rcu_gp(call_rcu_sched);
2804
			atomic_long_inc(&rsp->expedited_normal);
2805 2806 2807
			return;
		}

2808
		/* Recheck to see if someone else did our work for us. */
2809
		s = atomic_long_read(&rsp->expedited_done);
2810
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2811 2812 2813
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2814 2815 2816 2817 2818
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2819 2820 2821 2822
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2823 2824
		 */
		get_online_cpus();
2825
		snap = atomic_long_read(&rsp->expedited_start);
2826 2827
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2828
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2829 2830 2831 2832 2833

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2834
	 * than we did already did their update.
2835 2836
	 */
	do {
2837
		atomic_long_inc(&rsp->expedited_done_tries);
2838
		s = atomic_long_read(&rsp->expedited_done);
2839
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2840 2841 2842
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2843 2844
			break;
		}
2845
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2846
	atomic_long_inc(&rsp->expedited_done_exit);
2847 2848 2849 2850 2851

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2852 2853 2854 2855 2856 2857 2858 2859 2860
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2861 2862
	struct rcu_node *rnp = rdp->mynode;

2863 2864 2865 2866 2867
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

2868 2869 2870 2871
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

2872
	/* Is the RCU core waiting for a quiescent state from this CPU? */
2873 2874
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2875
		rdp->n_rp_qs_pending++;
2876
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2877
		rdp->n_rp_report_qs++;
2878
		return 1;
2879
	}
2880 2881

	/* Does this CPU have callbacks ready to invoke? */
2882 2883
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2884
		return 1;
2885
	}
2886 2887

	/* Has RCU gone idle with this CPU needing another grace period? */
2888 2889
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2890
		return 1;
2891
	}
2892 2893

	/* Has another RCU grace period completed?  */
2894
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2895
		rdp->n_rp_gp_completed++;
2896
		return 1;
2897
	}
2898 2899

	/* Has a new RCU grace period started? */
2900
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2901
		rdp->n_rp_gp_started++;
2902
		return 1;
2903
	}
2904

2905 2906 2907 2908 2909 2910
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

2911
	/* nothing to do */
2912
	rdp->n_rp_need_nothing++;
2913 2914 2915 2916 2917 2918 2919 2920
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2921
static int rcu_pending(int cpu)
2922
{
2923 2924 2925 2926 2927 2928
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2929 2930 2931
}

/*
2932 2933 2934
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
2935
 */
2936
static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2937
{
2938 2939 2940
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
2941 2942
	struct rcu_state *rsp;

2943 2944
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2945 2946 2947 2948
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2949
			al = false;
2950 2951
			break;
		}
2952 2953 2954 2955
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
2956 2957
}

2958 2959 2960 2961
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
2962
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2963 2964 2965 2966 2967 2968
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2969 2970 2971 2972
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2973
static void rcu_barrier_callback(struct rcu_head *rhp)
2974
{
2975 2976 2977
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2978 2979
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2980
		complete(&rsp->barrier_completion);
2981 2982 2983
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2984 2985 2986 2987 2988 2989 2990
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2991
	struct rcu_state *rsp = type;
2992
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2993

2994
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2995
	atomic_inc(&rsp->barrier_cpu_count);
2996
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2997 2998 2999 3000 3001 3002
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3003
static void _rcu_barrier(struct rcu_state *rsp)
3004
{
3005 3006
	int cpu;
	struct rcu_data *rdp;
3007 3008
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3009

3010
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3011

3012
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3013
	mutex_lock(&rsp->barrier_mutex);
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3027
	snap_done = rsp->n_barrier_done;
3028
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3041
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3054
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3055
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3056

3057
	/*
3058 3059
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3060 3061
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3062
	 */
3063
	init_completion(&rsp->barrier_completion);
3064
	atomic_set(&rsp->barrier_cpu_count, 1);
3065
	get_online_cpus();
3066 3067

	/*
3068 3069 3070
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3071
	 */
P
Paul E. McKenney 已提交
3072
	for_each_possible_cpu(cpu) {
3073
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3074
			continue;
3075
		rdp = per_cpu_ptr(rsp->rda, cpu);
3076
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
3077 3078 3079 3080 3081 3082
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
3083 3084
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3085
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3086
		} else {
3087 3088
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3089 3090
		}
	}
3091
	put_online_cpus();
3092 3093 3094 3095 3096

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3097
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3098
		complete(&rsp->barrier_completion);
3099

3100 3101 3102 3103
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3104
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3105 3106
	smp_mb(); /* Keep increment before caller's subsequent code. */

3107
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3108
	wait_for_completion(&rsp->barrier_completion);
3109 3110

	/* Other rcu_barrier() invocations can now safely proceed. */
3111
	mutex_unlock(&rsp->barrier_mutex);
3112 3113 3114 3115 3116 3117 3118
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3119
	_rcu_barrier(&rcu_bh_state);
3120 3121 3122 3123 3124 3125 3126 3127
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3128
	_rcu_barrier(&rcu_sched_state);
3129 3130 3131
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3132
/*
3133
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3134
 */
3135 3136
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3137 3138
{
	unsigned long flags;
3139
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3140 3141 3142
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3143
	raw_spin_lock_irqsave(&rnp->lock, flags);
3144
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3145
	init_callback_list(rdp);
3146
	rdp->qlen_lazy = 0;
3147
	ACCESS_ONCE(rdp->qlen) = 0;
3148
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3149
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3150
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3151
	rdp->cpu = cpu;
3152
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3153
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3154
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3155 3156 3157 3158 3159 3160 3161
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3162
 */
3163
static void
P
Paul E. McKenney 已提交
3164
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3165 3166 3167
{
	unsigned long flags;
	unsigned long mask;
3168
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3169 3170
	struct rcu_node *rnp = rcu_get_root(rsp);

3171 3172 3173
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3174
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3175
	raw_spin_lock_irqsave(&rnp->lock, flags);
3176
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
3177
	rdp->preemptible = preemptible;
3178 3179
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3180
	rdp->blimit = blimit;
3181
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3182
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3183
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3184 3185
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3186
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3187 3188 3189 3190 3191 3192

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3193
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3194 3195
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3196
		if (rnp == rdp->mynode) {
3197 3198 3199 3200 3201 3202
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3203
			rdp->completed = rnp->completed;
3204 3205
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3206
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3207
		}
P
Paul E. McKenney 已提交
3208
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3209 3210
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3211
	local_irq_restore(flags);
3212

3213
	mutex_unlock(&rsp->onoff_mutex);
3214 3215
}

3216
static void rcu_prepare_cpu(int cpu)
3217
{
3218 3219 3220 3221 3222
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
3223 3224 3225
}

/*
3226
 * Handle CPU online/offline notification events.
3227
 */
3228
static int rcu_cpu_notify(struct notifier_block *self,
3229
				    unsigned long action, void *hcpu)
3230 3231
{
	long cpu = (long)hcpu;
3232
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3233
	struct rcu_node *rnp = rdp->mynode;
3234
	struct rcu_state *rsp;
3235

3236
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3237 3238 3239
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3240 3241
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3242 3243
		break;
	case CPU_ONLINE:
3244
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3245
		rcu_boost_kthread_setaffinity(rnp, -1);
3246 3247
		break;
	case CPU_DOWN_PREPARE:
3248
		rcu_boost_kthread_setaffinity(rnp, cpu);
3249
		break;
3250 3251
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3252 3253
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3254
		break;
3255 3256 3257 3258
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3259 3260
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3261 3262 3263 3264
		break;
	default:
		break;
	}
3265
	trace_rcu_utilization(TPS("End CPU hotplug"));
3266
	return NOTIFY_OK;
3267 3268
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3299
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3300 3301 3302 3303 3304
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3305
		rcu_spawn_nocb_kthreads(rsp);
3306 3307 3308 3309 3310
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3326 3327 3328 3329 3330 3331 3332 3333 3334
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3335 3336
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3337 3338 3339 3340 3341 3342 3343 3344 3345
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3346
	cprv = nr_cpu_ids;
3347
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3358 3359
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3360
{
3361 3362 3363 3364 3365 3366 3367 3368
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3369 3370 3371 3372 3373
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3374 3375
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3376 3377 3378 3379
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3380 3381
	/* Initialize the level-tracking arrays. */

3382 3383 3384
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3385 3386 3387 3388 3389
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3390
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3391 3392 3393
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3394
			raw_spin_lock_init(&rnp->lock);
3395 3396
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3397 3398 3399
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3400 3401
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3419
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3420
			rcu_init_one_nocb(rnp);
3421 3422
		}
	}
3423

3424
	rsp->rda = rda;
3425
	init_waitqueue_head(&rsp->gp_wq);
3426
	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3427
	rnp = rsp->level[rcu_num_lvls - 1];
3428
	for_each_possible_cpu(i) {
3429
		while (i > rnp->grphi)
3430
			rnp++;
3431
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3432 3433
		rcu_boot_init_percpu_data(i, rsp);
	}
3434
	list_add(&rsp->flavors, &rcu_struct_flavors);
3435 3436
}

3437 3438
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3439
 * replace the definitions in tree.h because those are needed to size
3440 3441 3442 3443
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3444
	ulong d;
3445 3446
	int i;
	int j;
3447
	int n = nr_cpu_ids;
3448 3449
	int rcu_capacity[MAX_RCU_LVLS + 1];

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3463
	/* If the compile-time values are accurate, just leave. */
3464 3465
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3466
		return;
3467 3468
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3514
void __init rcu_init(void)
3515
{
P
Paul E. McKenney 已提交
3516
	int cpu;
3517

3518
	rcu_bootup_announce();
3519
	rcu_init_geometry();
3520
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3521
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3522
	__rcu_init_preempt();
J
Jiang Fang 已提交
3523
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3524 3525 3526 3527 3528 3529 3530

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3531
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3532 3533
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3534 3535
}

3536
#include "tree_plugin.h"