book3s_hv_rm_mmu.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
14
#include <linux/module.h>
15 16 17 18 19 20 21 22 23

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>

24 25 26 27 28 29 30 31 32 33 34 35 36
/* Translate address of a vmalloc'd thing to a linear map address */
static void *real_vmalloc_addr(void *x)
{
	unsigned long addr = (unsigned long) x;
	pte_t *p;

	p = find_linux_pte(swapper_pg_dir, addr);
	if (!p || !pte_present(*p))
		return NULL;
	/* assume we don't have huge pages in vmalloc space... */
	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
	return __va(addr);
}
37

38 39 40 41
/*
 * Add this HPTE into the chain for the real page.
 * Must be called with the chain locked; it unlocks the chain.
 */
42
void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
			     unsigned long *rmap, long pte_index, int realmode)
{
	struct revmap_entry *head, *tail;
	unsigned long i;

	if (*rmap & KVMPPC_RMAP_PRESENT) {
		i = *rmap & KVMPPC_RMAP_INDEX;
		head = &kvm->arch.revmap[i];
		if (realmode)
			head = real_vmalloc_addr(head);
		tail = &kvm->arch.revmap[head->back];
		if (realmode)
			tail = real_vmalloc_addr(tail);
		rev->forw = i;
		rev->back = head->back;
		tail->forw = pte_index;
		head->back = pte_index;
	} else {
		rev->forw = rev->back = pte_index;
		i = pte_index;
	}
	smp_wmb();
	*rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
}
67
EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
68 69 70

/* Remove this HPTE from the chain for a real page */
static void remove_revmap_chain(struct kvm *kvm, long pte_index,
71 72
				struct revmap_entry *rev,
				unsigned long hpte_v, unsigned long hpte_r)
73
{
74
	struct revmap_entry *next, *prev;
75 76 77
	unsigned long gfn, ptel, head;
	struct kvm_memory_slot *memslot;
	unsigned long *rmap;
78
	unsigned long rcbits;
79

80 81
	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
	ptel = rev->guest_rpte |= rcbits;
82
	gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
83
	memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
84 85 86
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
		return;

87
	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
88 89 90 91 92 93 94 95 96 97 98 99 100 101
	lock_rmap(rmap);

	head = *rmap & KVMPPC_RMAP_INDEX;
	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
	next->back = rev->back;
	prev->forw = rev->forw;
	if (head == pte_index) {
		head = rev->forw;
		if (head == pte_index)
			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
		else
			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
	}
102
	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
103 104 105
	unlock_rmap(rmap);
}

106
static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
107
			      int writing, unsigned long *pte_sizep)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	pte_t *ptep;
	unsigned long ps = *pte_sizep;
	unsigned int shift;

	ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
	if (!ptep)
		return __pte(0);
	if (shift)
		*pte_sizep = 1ul << shift;
	else
		*pte_sizep = PAGE_SIZE;
	if (ps > *pte_sizep)
		return __pte(0);
	if (!pte_present(*ptep))
		return __pte(0);
124
	return kvmppc_read_update_linux_pte(ptep, writing);
125 126
}

127 128 129 130 131 132
static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
{
	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
	hpte[0] = hpte_v;
}

133 134 135 136
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
		    long pte_index, unsigned long pteh, unsigned long ptel)
{
	struct kvm *kvm = vcpu->kvm;
137
	unsigned long i, pa, gpa, gfn, psize;
138
	unsigned long slot_fn, hva;
139
	unsigned long *hpte;
140 141
	struct revmap_entry *rev;
	unsigned long g_ptel = ptel;
142
	struct kvm_memory_slot *memslot;
143
	unsigned long *physp, pte_size;
144
	unsigned long is_io;
145
	unsigned long *rmap;
146
	pte_t pte;
147
	unsigned int writing;
148
	unsigned long mmu_seq;
149
	unsigned long rcbits;
150 151 152 153
	bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;

	psize = hpte_page_size(pteh, ptel);
	if (!psize)
154
		return H_PARAMETER;
155
	writing = hpte_is_writable(ptel);
156
	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
157

158 159 160 161
	/* used later to detect if we might have been invalidated */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

162 163 164
	/* Find the memslot (if any) for this address */
	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
	gfn = gpa >> PAGE_SHIFT;
165
	memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
166
	pa = 0;
167
	is_io = ~0ul;
168 169 170 171 172 173 174 175 176 177
	rmap = NULL;
	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
		/* PPC970 can't do emulated MMIO */
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return H_PARAMETER;
		/* Emulated MMIO - mark this with key=31 */
		pteh |= HPTE_V_ABSENT;
		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
		goto do_insert;
	}
178 179 180 181

	/* Check if the requested page fits entirely in the memslot. */
	if (!slot_is_aligned(memslot, psize))
		return H_PARAMETER;
182
	slot_fn = gfn - memslot->base_gfn;
183
	rmap = &memslot->arch.rmap[slot_fn];
184

185
	if (!kvm->arch.using_mmu_notifiers) {
186
		physp = memslot->arch.slot_phys;
187 188 189 190 191 192 193 194 195 196 197 198 199
		if (!physp)
			return H_PARAMETER;
		physp += slot_fn;
		if (realmode)
			physp = real_vmalloc_addr(physp);
		pa = *physp;
		if (!pa)
			return H_TOO_HARD;
		is_io = pa & (HPTE_R_I | HPTE_R_W);
		pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
		pa &= PAGE_MASK;
	} else {
		/* Translate to host virtual address */
200
		hva = __gfn_to_hva_memslot(memslot, gfn);
201 202 203

		/* Look up the Linux PTE for the backing page */
		pte_size = psize;
204
		pte = lookup_linux_pte(vcpu, hva, writing, &pte_size);
205
		if (pte_present(pte)) {
206 207 208
			if (writing && !pte_write(pte))
				/* make the actual HPTE be read-only */
				ptel = hpte_make_readonly(ptel);
209 210 211 212
			is_io = hpte_cache_bits(pte_val(pte));
			pa = pte_pfn(pte) << PAGE_SHIFT;
		}
	}
213 214 215 216 217 218 219
	if (pte_size < psize)
		return H_PARAMETER;
	if (pa && pte_size > psize)
		pa |= gpa & (pte_size - 1);

	ptel &= ~(HPTE_R_PP0 - psize);
	ptel |= pa;
220 221 222 223 224

	if (pa)
		pteh |= HPTE_V_VALID;
	else
		pteh |= HPTE_V_ABSENT;
225

226
	/* Check WIMG */
227
	if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
228 229 230 231 232 233 234 235 236
		if (is_io)
			return H_PARAMETER;
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
		ptel |= HPTE_R_M;
	}
237

238
	/* Find and lock the HPTEG slot to use */
239
 do_insert:
240
	if (pte_index >= kvm->arch.hpt_npte)
241 242 243 244
		return H_PARAMETER;
	if (likely((flags & H_EXACT) == 0)) {
		pte_index &= ~7UL;
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
245
		for (i = 0; i < 8; ++i) {
246
			if ((*hpte & HPTE_V_VALID) == 0 &&
247 248
			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
					  HPTE_V_ABSENT))
249 250 251
				break;
			hpte += 2;
		}
252 253 254 255 256 257 258 259 260 261 262
		if (i == 8) {
			/*
			 * Since try_lock_hpte doesn't retry (not even stdcx.
			 * failures), it could be that there is a free slot
			 * but we transiently failed to lock it.  Try again,
			 * actually locking each slot and checking it.
			 */
			hpte -= 16;
			for (i = 0; i < 8; ++i) {
				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
					cpu_relax();
263
				if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
264 265 266 267 268 269 270
					break;
				*hpte &= ~HPTE_V_HVLOCK;
				hpte += 2;
			}
			if (i == 8)
				return H_PTEG_FULL;
		}
271
		pte_index += i;
272 273
	} else {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
274 275
		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
				   HPTE_V_ABSENT)) {
276 277 278
			/* Lock the slot and check again */
			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
				cpu_relax();
279
			if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
280 281 282 283
				*hpte &= ~HPTE_V_HVLOCK;
				return H_PTEG_FULL;
			}
		}
284
	}
285 286

	/* Save away the guest's idea of the second HPTE dword */
287 288 289
	rev = &kvm->arch.revmap[pte_index];
	if (realmode)
		rev = real_vmalloc_addr(rev);
290 291
	if (rev)
		rev->guest_rpte = g_ptel;
292 293

	/* Link HPTE into reverse-map chain */
294 295 296 297
	if (pteh & HPTE_V_VALID) {
		if (realmode)
			rmap = real_vmalloc_addr(rmap);
		lock_rmap(rmap);
298 299 300 301 302 303 304 305 306 307
		/* Check for pending invalidations under the rmap chain lock */
		if (kvm->arch.using_mmu_notifiers &&
		    mmu_notifier_retry(vcpu, mmu_seq)) {
			/* inval in progress, write a non-present HPTE */
			pteh |= HPTE_V_ABSENT;
			pteh &= ~HPTE_V_VALID;
			unlock_rmap(rmap);
		} else {
			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
						realmode);
308 309 310
			/* Only set R/C in real HPTE if already set in *rmap */
			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
311
		}
312
	}
313

314
	hpte[1] = ptel;
315 316

	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
317 318 319
	eieio();
	hpte[0] = pteh;
	asm volatile("ptesync" : : : "memory");
320

321
	vcpu->arch.gpr[4] = pte_index;
322 323
	return H_SUCCESS;
}
324
EXPORT_SYMBOL_GPL(kvmppc_h_enter);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

#define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))

static inline int try_lock_tlbie(unsigned int *lock)
{
	unsigned int tmp, old;
	unsigned int token = LOCK_TOKEN;

	asm volatile("1:lwarx	%1,0,%2\n"
		     "	cmpwi	cr0,%1,0\n"
		     "	bne	2f\n"
		     "  stwcx.	%3,0,%2\n"
		     "	bne-	1b\n"
		     "  isync\n"
		     "2:"
		     : "=&r" (tmp), "=&r" (old)
		     : "r" (lock), "r" (token)
		     : "cc", "memory");
	return old == 0;
}

long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
		     unsigned long pte_index, unsigned long avpn,
		     unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
	unsigned long v, r, rb;
353
	struct revmap_entry *rev;
354

355
	if (pte_index >= kvm->arch.hpt_npte)
356 357
		return H_PARAMETER;
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
358
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
359
		cpu_relax();
360
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
361 362 363 364 365
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
	    ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	v = hpte[0] & ~HPTE_V_HVLOCK;
	if (v & HPTE_V_VALID) {
		hpte[0] &= ~HPTE_V_VALID;
		rb = compute_tlbie_rb(v, hpte[1], pte_index);
		if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
			while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
				cpu_relax();
			asm volatile("ptesync" : : : "memory");
			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
				     : : "r" (rb), "r" (kvm->arch.lpid));
			asm volatile("ptesync" : : : "memory");
			kvm->arch.tlbie_lock = 0;
		} else {
			asm volatile("ptesync" : : : "memory");
			asm volatile("tlbiel %0" : : "r" (rb));
			asm volatile("ptesync" : : : "memory");
		}
385 386
		/* Read PTE low word after tlbie to get final R/C values */
		remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
387
	}
388 389 390 391 392
	r = rev->guest_rpte;
	unlock_hpte(hpte, 0);

	vcpu->arch.gpr[4] = v;
	vcpu->arch.gpr[5] = r;
393 394 395 396 397 398 399
	return H_SUCCESS;
}

long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *args = &vcpu->arch.gpr[4];
400 401 402
	unsigned long *hp, *hptes[4], tlbrb[4];
	long int i, j, k, n, found, indexes[4];
	unsigned long flags, req, pte_index, rcbits;
403 404
	long int local = 0;
	long int ret = H_SUCCESS;
405
	struct revmap_entry *rev, *revs[4];
406 407 408

	if (atomic_read(&kvm->online_vcpus) == 1)
		local = 1;
409 410 411 412 413 414 415 416 417 418 419
	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
		n = 0;
		for (; i < 4; ++i) {
			j = i * 2;
			pte_index = args[j];
			flags = pte_index >> 56;
			pte_index &= ((1ul << 56) - 1);
			req = flags >> 6;
			flags &= 3;
			if (req == 3) {		/* no more requests */
				i = 4;
420
				break;
421
			}
422 423
			if (req != 1 || flags == 3 ||
			    pte_index >= kvm->arch.hpt_npte) {
424 425 426
				/* parameter error */
				args[j] = ((0xa0 | flags) << 56) + pte_index;
				ret = H_PARAMETER;
427
				break;
428 429 430 431 432 433 434 435 436 437 438 439 440 441
			}
			hp = (unsigned long *)
				(kvm->arch.hpt_virt + (pte_index << 4));
			/* to avoid deadlock, don't spin except for first */
			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
				if (n)
					break;
				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
					cpu_relax();
			}
			found = 0;
			if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
				switch (flags & 3) {
				case 0:		/* absolute */
442
					found = 1;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
					break;
				case 1:		/* andcond */
					if (!(hp[0] & args[j + 1]))
						found = 1;
					break;
				case 2:		/* AVPN */
					if ((hp[0] & ~0x7fUL) == args[j + 1])
						found = 1;
					break;
				}
			}
			if (!found) {
				hp[0] &= ~HPTE_V_HVLOCK;
				args[j] = ((0x90 | flags) << 56) + pte_index;
				continue;
458
			}
459 460 461 462

			args[j] = ((0x80 | flags) << 56) + pte_index;
			rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);

463 464 465 466
			if (!(hp[0] & HPTE_V_VALID)) {
				/* insert R and C bits from PTE */
				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
				args[j] |= rcbits << (56 - 5);
467
				hp[0] = 0;
468
				continue;
469
			}
470 471 472 473 474 475 476

			hp[0] &= ~HPTE_V_VALID;		/* leave it locked */
			tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
			indexes[n] = j;
			hptes[n] = hp;
			revs[n] = rev;
			++n;
477
		}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

		if (!n)
			break;

		/* Now that we've collected a batch, do the tlbies */
		if (!local) {
			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
				cpu_relax();
			asm volatile("ptesync" : : : "memory");
			for (k = 0; k < n; ++k)
				asm volatile(PPC_TLBIE(%1,%0) : :
					     "r" (tlbrb[k]),
					     "r" (kvm->arch.lpid));
			asm volatile("eieio; tlbsync; ptesync" : : : "memory");
			kvm->arch.tlbie_lock = 0;
		} else {
			asm volatile("ptesync" : : : "memory");
			for (k = 0; k < n; ++k)
				asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
			asm volatile("ptesync" : : : "memory");
498
		}
499

500
		/* Read PTE low words after tlbie to get final R/C values */
501 502 503 504 505
		for (k = 0; k < n; ++k) {
			j = indexes[k];
			pte_index = args[j] & ((1ul << 56) - 1);
			hp = hptes[k];
			rev = revs[k];
506 507 508 509
			remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
			args[j] |= rcbits << (56 - 5);
			hp[0] = 0;
510
		}
511
	}
512

513 514 515 516 517 518 519 520 521
	return ret;
}

long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
		      unsigned long pte_index, unsigned long avpn,
		      unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
522 523
	struct revmap_entry *rev;
	unsigned long v, r, rb, mask, bits;
524

525
	if (pte_index >= kvm->arch.hpt_npte)
526
		return H_PARAMETER;
527

528
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
529
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
530
		cpu_relax();
531
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
532 533 534 535
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
536

537 538 539
	if (atomic_read(&kvm->online_vcpus) == 1)
		flags |= H_LOCAL;
	v = hpte[0];
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	bits = (flags << 55) & HPTE_R_PP0;
	bits |= (flags << 48) & HPTE_R_KEY_HI;
	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);

	/* Update guest view of 2nd HPTE dword */
	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	if (rev) {
		r = (rev->guest_rpte & ~mask) | bits;
		rev->guest_rpte = r;
	}
	r = (hpte[1] & ~mask) | bits;

	/* Update HPTE */
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	if (v & HPTE_V_VALID) {
		rb = compute_tlbie_rb(v, r, pte_index);
		hpte[0] = v & ~HPTE_V_VALID;
		if (!(flags & H_LOCAL)) {
			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
				cpu_relax();
			asm volatile("ptesync" : : : "memory");
			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
				     : : "r" (rb), "r" (kvm->arch.lpid));
			asm volatile("ptesync" : : : "memory");
			kvm->arch.tlbie_lock = 0;
		} else {
			asm volatile("ptesync" : : : "memory");
			asm volatile("tlbiel %0" : : "r" (rb));
			asm volatile("ptesync" : : : "memory");
		}
571 572 573 574 575 576 577 578 579 580 581 582
	}
	hpte[1] = r;
	eieio();
	hpte[0] = v & ~HPTE_V_HVLOCK;
	asm volatile("ptesync" : : : "memory");
	return H_SUCCESS;
}

long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
		   unsigned long pte_index)
{
	struct kvm *kvm = vcpu->kvm;
583
	unsigned long *hpte, v, r;
584
	int i, n = 1;
585
	struct revmap_entry *rev = NULL;
586

587
	if (pte_index >= kvm->arch.hpt_npte)
588 589 590 591 592
		return H_PARAMETER;
	if (flags & H_READ_4) {
		pte_index &= ~3;
		n = 4;
	}
593
	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
594 595
	for (i = 0; i < n; ++i, ++pte_index) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
596
		v = hpte[0] & ~HPTE_V_HVLOCK;
597
		r = hpte[1];
598 599 600 601
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
		}
602 603
		if (v & HPTE_V_VALID)
			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
604
		vcpu->arch.gpr[4 + i * 2] = v;
605 606 607 608
		vcpu->arch.gpr[5 + i * 2] = r;
	}
	return H_SUCCESS;
}
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
			unsigned long pte_index)
{
	unsigned long rb;

	hptep[0] &= ~HPTE_V_VALID;
	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
		cpu_relax();
	asm volatile("ptesync" : : : "memory");
	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
		     : : "r" (rb), "r" (kvm->arch.lpid));
	asm volatile("ptesync" : : : "memory");
	kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
			   unsigned long pte_index)
{
	unsigned long rb;
	unsigned char rbyte;

	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
	rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
	/* modify only the second-last byte, which contains the ref bit */
	*((char *)hptep + 14) = rbyte;
	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
		cpu_relax();
	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
		     : : "r" (rb), "r" (kvm->arch.lpid));
	asm volatile("ptesync" : : : "memory");
	kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static int slb_base_page_shift[4] = {
	24,	/* 16M */
	16,	/* 64k */
	34,	/* 16G */
	20,	/* 1M, unsupported */
};

long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
			      unsigned long valid)
{
	unsigned int i;
	unsigned int pshift;
	unsigned long somask;
	unsigned long vsid, hash;
	unsigned long avpn;
	unsigned long *hpte;
	unsigned long mask, val;
	unsigned long v, r;

	/* Get page shift, work out hash and AVPN etc. */
	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
	val = 0;
	pshift = 12;
	if (slb_v & SLB_VSID_L) {
		mask |= HPTE_V_LARGE;
		val |= HPTE_V_LARGE;
		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
	}
	if (slb_v & SLB_VSID_B_1T) {
		somask = (1UL << 40) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
		vsid ^= vsid << 25;
	} else {
		somask = (1UL << 28) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
	}
682
	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	avpn = slb_v & ~(somask >> 16);	/* also includes B */
	avpn |= (eaddr & somask) >> 16;

	if (pshift >= 24)
		avpn &= ~((1UL << (pshift - 16)) - 1);
	else
		avpn &= ~0x7fUL;
	val |= avpn;

	for (;;) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));

		for (i = 0; i < 16; i += 2) {
			/* Read the PTE racily */
			v = hpte[i] & ~HPTE_V_HVLOCK;

			/* Check valid/absent, hash, segment size and AVPN */
			if (!(v & valid) || (v & mask) != val)
				continue;

			/* Lock the PTE and read it under the lock */
			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
				cpu_relax();
			v = hpte[i] & ~HPTE_V_HVLOCK;
			r = hpte[i+1];

			/*
			 * Check the HPTE again, including large page size
			 * Since we don't currently allow any MPSS (mixed
			 * page-size segment) page sizes, it is sufficient
			 * to check against the actual page size.
			 */
			if ((v & valid) && (v & mask) == val &&
			    hpte_page_size(v, r) == (1ul << pshift))
				/* Return with the HPTE still locked */
				return (hash << 3) + (i >> 1);

			/* Unlock and move on */
			hpte[i] = v;
		}

		if (val & HPTE_V_SECONDARY)
			break;
		val |= HPTE_V_SECONDARY;
727
		hash = hash ^ kvm->arch.hpt_mask;
728 729 730 731 732 733 734
	}
	return -1;
}
EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);

/*
 * Called in real mode to check whether an HPTE not found fault
735 736 737
 * is due to accessing a paged-out page or an emulated MMIO page,
 * or if a protection fault is due to accessing a page that the
 * guest wanted read/write access to but which we made read-only.
738 739 740
 * Returns a possibly modified status (DSISR) value if not
 * (i.e. pass the interrupt to the guest),
 * -1 to pass the fault up to host kernel mode code, -2 to do that
741
 * and also load the instruction word (for MMIO emulation),
742 743 744
 * or 0 if we should make the guest retry the access.
 */
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
745
			  unsigned long slb_v, unsigned int status, bool data)
746 747 748 749 750 751 752 753 754
{
	struct kvm *kvm = vcpu->kvm;
	long int index;
	unsigned long v, r, gr;
	unsigned long *hpte;
	unsigned long valid;
	struct revmap_entry *rev;
	unsigned long pp, key;

755 756 757 758
	/* For protection fault, expect to find a valid HPTE */
	valid = HPTE_V_VALID;
	if (status & DSISR_NOHPTE)
		valid |= HPTE_V_ABSENT;
759

760
	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
761 762 763 764 765
	if (index < 0) {
		if (status & DSISR_NOHPTE)
			return status;	/* there really was no HPTE */
		return 0;		/* for prot fault, HPTE disappeared */
	}
766 767 768 769 770 771
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
	v = hpte[0] & ~HPTE_V_HVLOCK;
	r = hpte[1];
	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
	gr = rev->guest_rpte;

772
	unlock_hpte(hpte, v);
773

774 775
	/* For not found, if the HPTE is valid by now, retry the instruction */
	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
776 777 778 779 780
		return 0;

	/* Check access permissions to the page */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
781 782 783 784 785 786 787
	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
	if (!data) {
		if (gr & (HPTE_R_N | HPTE_R_G))
			return status | SRR1_ISI_N_OR_G;
		if (!hpte_read_permission(pp, slb_v & key))
			return status | SRR1_ISI_PROT;
	} else if (status & DSISR_ISSTORE) {
788 789
		/* check write permission */
		if (!hpte_write_permission(pp, slb_v & key))
790
			return status | DSISR_PROTFAULT;
791 792
	} else {
		if (!hpte_read_permission(pp, slb_v & key))
793
			return status | DSISR_PROTFAULT;
794 795 796
	}

	/* Check storage key, if applicable */
797
	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
798 799 800 801
		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (status & DSISR_ISSTORE)
			perm >>= 1;
		if (perm & 1)
802
			return status | DSISR_KEYFAULT;
803 804 805 806 807 808 809 810
	}

	/* Save HPTE info for virtual-mode handler */
	vcpu->arch.pgfault_addr = addr;
	vcpu->arch.pgfault_index = index;
	vcpu->arch.pgfault_hpte[0] = v;
	vcpu->arch.pgfault_hpte[1] = r;

811 812 813 814
	/* Check the storage key to see if it is possibly emulated MMIO */
	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
815 816 817 818
		return -2;	/* MMIO emulation - load instr word */

	return -1;		/* send fault up to host kernel mode */
}