book3s_hv_rm_mmu.c 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
14
#include <linux/module.h>
15 16 17 18 19 20 21 22 23

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Since this file is built in even if KVM is a module, we need
 * a local copy of this function for the case where kvm_main.c is
 * modular.
 */
static struct kvm_memory_slot *builtin_gfn_to_memslot(struct kvm *kvm,
						gfn_t gfn)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		if (gfn >= memslot->base_gfn &&
		      gfn < memslot->base_gfn + memslot->npages)
			return memslot;
	return NULL;
}

43 44 45 46 47 48 49 50 51 52 53 54 55
/* Translate address of a vmalloc'd thing to a linear map address */
static void *real_vmalloc_addr(void *x)
{
	unsigned long addr = (unsigned long) x;
	pte_t *p;

	p = find_linux_pte(swapper_pg_dir, addr);
	if (!p || !pte_present(*p))
		return NULL;
	/* assume we don't have huge pages in vmalloc space... */
	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
	return __va(addr);
}
56

57 58 59 60
/*
 * Add this HPTE into the chain for the real page.
 * Must be called with the chain locked; it unlocks the chain.
 */
61
void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
			     unsigned long *rmap, long pte_index, int realmode)
{
	struct revmap_entry *head, *tail;
	unsigned long i;

	if (*rmap & KVMPPC_RMAP_PRESENT) {
		i = *rmap & KVMPPC_RMAP_INDEX;
		head = &kvm->arch.revmap[i];
		if (realmode)
			head = real_vmalloc_addr(head);
		tail = &kvm->arch.revmap[head->back];
		if (realmode)
			tail = real_vmalloc_addr(tail);
		rev->forw = i;
		rev->back = head->back;
		tail->forw = pte_index;
		head->back = pte_index;
	} else {
		rev->forw = rev->back = pte_index;
		i = pte_index;
	}
	smp_wmb();
	*rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
}
86
EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

/* Remove this HPTE from the chain for a real page */
static void remove_revmap_chain(struct kvm *kvm, long pte_index,
				unsigned long hpte_v)
{
	struct revmap_entry *rev, *next, *prev;
	unsigned long gfn, ptel, head;
	struct kvm_memory_slot *memslot;
	unsigned long *rmap;

	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	ptel = rev->guest_rpte;
	gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
	memslot = builtin_gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
		return;

	rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
	lock_rmap(rmap);

	head = *rmap & KVMPPC_RMAP_INDEX;
	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
	next->back = rev->back;
	prev->forw = rev->forw;
	if (head == pte_index) {
		head = rev->forw;
		if (head == pte_index)
			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
		else
			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
	}
	unlock_rmap(rmap);
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
			      unsigned long *pte_sizep)
{
	pte_t *ptep;
	unsigned long ps = *pte_sizep;
	unsigned int shift;

	ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
	if (!ptep)
		return __pte(0);
	if (shift)
		*pte_sizep = 1ul << shift;
	else
		*pte_sizep = PAGE_SIZE;
	if (ps > *pte_sizep)
		return __pte(0);
	if (!pte_present(*ptep))
		return __pte(0);
	return kvmppc_read_update_linux_pte(ptep);
}

143 144 145 146
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
		    long pte_index, unsigned long pteh, unsigned long ptel)
{
	struct kvm *kvm = vcpu->kvm;
147
	unsigned long i, pa, gpa, gfn, psize;
148
	unsigned long slot_fn, hva;
149
	unsigned long *hpte;
150 151
	struct revmap_entry *rev;
	unsigned long g_ptel = ptel;
152
	struct kvm_memory_slot *memslot;
153
	unsigned long *physp, pte_size;
154
	unsigned long is_io;
155
	unsigned long *rmap;
156 157
	pte_t pte;
	unsigned long mmu_seq;
158 159 160 161
	bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;

	psize = hpte_page_size(pteh, ptel);
	if (!psize)
162
		return H_PARAMETER;
163
	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
164

165 166 167 168
	/* used later to detect if we might have been invalidated */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

169 170 171
	/* Find the memslot (if any) for this address */
	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
	gfn = gpa >> PAGE_SHIFT;
172
	memslot = builtin_gfn_to_memslot(kvm, gfn);
173
	pa = 0;
174
	is_io = ~0ul;
175 176 177 178 179 180 181 182 183 184
	rmap = NULL;
	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
		/* PPC970 can't do emulated MMIO */
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return H_PARAMETER;
		/* Emulated MMIO - mark this with key=31 */
		pteh |= HPTE_V_ABSENT;
		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
		goto do_insert;
	}
185 186 187 188

	/* Check if the requested page fits entirely in the memslot. */
	if (!slot_is_aligned(memslot, psize))
		return H_PARAMETER;
189
	slot_fn = gfn - memslot->base_gfn;
190
	rmap = &memslot->rmap[slot_fn];
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	if (!kvm->arch.using_mmu_notifiers) {
		physp = kvm->arch.slot_phys[memslot->id];
		if (!physp)
			return H_PARAMETER;
		physp += slot_fn;
		if (realmode)
			physp = real_vmalloc_addr(physp);
		pa = *physp;
		if (!pa)
			return H_TOO_HARD;
		is_io = pa & (HPTE_R_I | HPTE_R_W);
		pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
		pa &= PAGE_MASK;
	} else {
		/* Translate to host virtual address */
		hva = gfn_to_hva_memslot(memslot, gfn);

		/* Look up the Linux PTE for the backing page */
		pte_size = psize;
		pte = lookup_linux_pte(vcpu, hva, &pte_size);
		if (pte_present(pte)) {
			is_io = hpte_cache_bits(pte_val(pte));
			pa = pte_pfn(pte) << PAGE_SHIFT;
		}
	}
217 218 219 220 221 222 223
	if (pte_size < psize)
		return H_PARAMETER;
	if (pa && pte_size > psize)
		pa |= gpa & (pte_size - 1);

	ptel &= ~(HPTE_R_PP0 - psize);
	ptel |= pa;
224 225 226 227 228

	if (pa)
		pteh |= HPTE_V_VALID;
	else
		pteh |= HPTE_V_ABSENT;
229

230
	/* Check WIMG */
231
	if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
232 233 234 235 236 237 238 239 240
		if (is_io)
			return H_PARAMETER;
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
		ptel |= HPTE_R_M;
	}
241

242
	/* Find and lock the HPTEG slot to use */
243
 do_insert:
244
	if (pte_index >= HPT_NPTE)
245 246 247 248
		return H_PARAMETER;
	if (likely((flags & H_EXACT) == 0)) {
		pte_index &= ~7UL;
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
249
		for (i = 0; i < 8; ++i) {
250
			if ((*hpte & HPTE_V_VALID) == 0 &&
251 252
			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
					  HPTE_V_ABSENT))
253 254 255
				break;
			hpte += 2;
		}
256 257 258 259 260 261 262 263 264 265 266
		if (i == 8) {
			/*
			 * Since try_lock_hpte doesn't retry (not even stdcx.
			 * failures), it could be that there is a free slot
			 * but we transiently failed to lock it.  Try again,
			 * actually locking each slot and checking it.
			 */
			hpte -= 16;
			for (i = 0; i < 8; ++i) {
				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
					cpu_relax();
267
				if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
268 269 270 271 272 273 274
					break;
				*hpte &= ~HPTE_V_HVLOCK;
				hpte += 2;
			}
			if (i == 8)
				return H_PTEG_FULL;
		}
275
		pte_index += i;
276 277
	} else {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
278 279
		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
				   HPTE_V_ABSENT)) {
280 281 282
			/* Lock the slot and check again */
			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
				cpu_relax();
283
			if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
284 285 286 287
				*hpte &= ~HPTE_V_HVLOCK;
				return H_PTEG_FULL;
			}
		}
288
	}
289 290

	/* Save away the guest's idea of the second HPTE dword */
291 292 293
	rev = &kvm->arch.revmap[pte_index];
	if (realmode)
		rev = real_vmalloc_addr(rev);
294 295
	if (rev)
		rev->guest_rpte = g_ptel;
296 297

	/* Link HPTE into reverse-map chain */
298 299 300 301
	if (pteh & HPTE_V_VALID) {
		if (realmode)
			rmap = real_vmalloc_addr(rmap);
		lock_rmap(rmap);
302 303 304 305 306 307 308 309 310 311 312
		/* Check for pending invalidations under the rmap chain lock */
		if (kvm->arch.using_mmu_notifiers &&
		    mmu_notifier_retry(vcpu, mmu_seq)) {
			/* inval in progress, write a non-present HPTE */
			pteh |= HPTE_V_ABSENT;
			pteh &= ~HPTE_V_VALID;
			unlock_rmap(rmap);
		} else {
			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
						realmode);
		}
313
	}
314

315
	hpte[1] = ptel;
316 317

	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
318 319 320
	eieio();
	hpte[0] = pteh;
	asm volatile("ptesync" : : : "memory");
321

322
	vcpu->arch.gpr[4] = pte_index;
323 324
	return H_SUCCESS;
}
325
EXPORT_SYMBOL_GPL(kvmppc_h_enter);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

#define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))

static inline int try_lock_tlbie(unsigned int *lock)
{
	unsigned int tmp, old;
	unsigned int token = LOCK_TOKEN;

	asm volatile("1:lwarx	%1,0,%2\n"
		     "	cmpwi	cr0,%1,0\n"
		     "	bne	2f\n"
		     "  stwcx.	%3,0,%2\n"
		     "	bne-	1b\n"
		     "  isync\n"
		     "2:"
		     : "=&r" (tmp), "=&r" (old)
		     : "r" (lock), "r" (token)
		     : "cc", "memory");
	return old == 0;
}

long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
		     unsigned long pte_index, unsigned long avpn,
		     unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
	unsigned long v, r, rb;

355
	if (pte_index >= HPT_NPTE)
356 357
		return H_PARAMETER;
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
358
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
359
		cpu_relax();
360
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
361 362 363 364 365 366 367 368 369 370
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
	    ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
	if (atomic_read(&kvm->online_vcpus) == 1)
		flags |= H_LOCAL;
	vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
	vcpu->arch.gpr[5] = r = hpte[1];
	rb = compute_tlbie_rb(v, r, pte_index);
371 372
	if (v & HPTE_V_VALID)
		remove_revmap_chain(kvm, pte_index, v);
373
	smp_wmb();
374
	hpte[0] = 0;
375 376
	if (!(v & HPTE_V_VALID))
		return H_SUCCESS;
377
	if (!(flags & H_LOCAL)) {
378
		while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			cpu_relax();
		asm volatile("ptesync" : : : "memory");
		asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
			     : : "r" (rb), "r" (kvm->arch.lpid));
		asm volatile("ptesync" : : : "memory");
		kvm->arch.tlbie_lock = 0;
	} else {
		asm volatile("ptesync" : : : "memory");
		asm volatile("tlbiel %0" : : "r" (rb));
		asm volatile("ptesync" : : : "memory");
	}
	return H_SUCCESS;
}

long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *args = &vcpu->arch.gpr[4];
	unsigned long *hp, tlbrb[4];
	long int i, found;
	long int n_inval = 0;
	unsigned long flags, req, pte_index;
	long int local = 0;
	long int ret = H_SUCCESS;

	if (atomic_read(&kvm->online_vcpus) == 1)
		local = 1;
	for (i = 0; i < 4; ++i) {
		pte_index = args[i * 2];
		flags = pte_index >> 56;
		pte_index &= ((1ul << 56) - 1);
		req = flags >> 6;
		flags &= 3;
		if (req == 3)
			break;
		if (req != 1 || flags == 3 ||
415
		    pte_index >= HPT_NPTE) {
416 417 418 419 420 421
			/* parameter error */
			args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
			ret = H_PARAMETER;
			break;
		}
		hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
422
		while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
423 424
			cpu_relax();
		found = 0;
425
		if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
			switch (flags & 3) {
			case 0:		/* absolute */
				found = 1;
				break;
			case 1:		/* andcond */
				if (!(hp[0] & args[i * 2 + 1]))
					found = 1;
				break;
			case 2:		/* AVPN */
				if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
					found = 1;
				break;
			}
		}
		if (!found) {
			hp[0] &= ~HPTE_V_HVLOCK;
			args[i * 2] = ((0x90 | flags) << 56) + pte_index;
			continue;
		}
		/* insert R and C bits from PTE */
		flags |= (hp[1] >> 5) & 0x0c;
		args[i * 2] = ((0x80 | flags) << 56) + pte_index;
448 449 450 451
		if (hp[0] & HPTE_V_VALID) {
			tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
			remove_revmap_chain(kvm, pte_index, hp[0]);
		}
452
		smp_wmb();
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		hp[0] = 0;
	}
	if (n_inval == 0)
		return ret;

	if (!local) {
		while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
			cpu_relax();
		asm volatile("ptesync" : : : "memory");
		for (i = 0; i < n_inval; ++i)
			asm volatile(PPC_TLBIE(%1,%0)
				     : : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
		kvm->arch.tlbie_lock = 0;
	} else {
		asm volatile("ptesync" : : : "memory");
		for (i = 0; i < n_inval; ++i)
			asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
		asm volatile("ptesync" : : : "memory");
	}
	return ret;
}

long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
		      unsigned long pte_index, unsigned long avpn,
		      unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
482 483
	struct revmap_entry *rev;
	unsigned long v, r, rb, mask, bits;
484

485
	if (pte_index >= HPT_NPTE)
486
		return H_PARAMETER;
487

488
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
489
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
490
		cpu_relax();
491
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
492 493 494 495
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
496

497 498 499
	if (atomic_read(&kvm->online_vcpus) == 1)
		flags |= H_LOCAL;
	v = hpte[0];
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	bits = (flags << 55) & HPTE_R_PP0;
	bits |= (flags << 48) & HPTE_R_KEY_HI;
	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);

	/* Update guest view of 2nd HPTE dword */
	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	if (rev) {
		r = (rev->guest_rpte & ~mask) | bits;
		rev->guest_rpte = r;
	}
	r = (hpte[1] & ~mask) | bits;

	/* Update HPTE */
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	if (v & HPTE_V_VALID) {
		rb = compute_tlbie_rb(v, r, pte_index);
		hpte[0] = v & ~HPTE_V_VALID;
		if (!(flags & H_LOCAL)) {
			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
				cpu_relax();
			asm volatile("ptesync" : : : "memory");
			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
				     : : "r" (rb), "r" (kvm->arch.lpid));
			asm volatile("ptesync" : : : "memory");
			kvm->arch.tlbie_lock = 0;
		} else {
			asm volatile("ptesync" : : : "memory");
			asm volatile("tlbiel %0" : : "r" (rb));
			asm volatile("ptesync" : : : "memory");
		}
531 532 533 534 535 536 537 538 539 540 541 542
	}
	hpte[1] = r;
	eieio();
	hpte[0] = v & ~HPTE_V_HVLOCK;
	asm volatile("ptesync" : : : "memory");
	return H_SUCCESS;
}

long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
		   unsigned long pte_index)
{
	struct kvm *kvm = vcpu->kvm;
543
	unsigned long *hpte, v, r;
544
	int i, n = 1;
545
	struct revmap_entry *rev = NULL;
546

547
	if (pte_index >= HPT_NPTE)
548 549 550 551 552
		return H_PARAMETER;
	if (flags & H_READ_4) {
		pte_index &= ~3;
		n = 4;
	}
553 554
	if (flags & H_R_XLATE)
		rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
555 556
	for (i = 0; i < n; ++i, ++pte_index) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
557
		v = hpte[0] & ~HPTE_V_HVLOCK;
558
		r = hpte[1];
559 560 561 562 563
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
		}
		if (v & HPTE_V_VALID) {
564 565 566 567 568
			if (rev)
				r = rev[i].guest_rpte;
			else
				r = hpte[1] | HPTE_R_RPN;
		}
569
		vcpu->arch.gpr[4 + i * 2] = v;
570 571 572 573
		vcpu->arch.gpr[5 + i * 2] = r;
	}
	return H_SUCCESS;
}
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
			unsigned long pte_index)
{
	unsigned long rb;

	hptep[0] &= ~HPTE_V_VALID;
	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
		cpu_relax();
	asm volatile("ptesync" : : : "memory");
	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
		     : : "r" (rb), "r" (kvm->arch.lpid));
	asm volatile("ptesync" : : : "memory");
	kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static int slb_base_page_shift[4] = {
	24,	/* 16M */
	16,	/* 64k */
	34,	/* 16G */
	20,	/* 1M, unsupported */
};

long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
			      unsigned long valid)
{
	unsigned int i;
	unsigned int pshift;
	unsigned long somask;
	unsigned long vsid, hash;
	unsigned long avpn;
	unsigned long *hpte;
	unsigned long mask, val;
	unsigned long v, r;

	/* Get page shift, work out hash and AVPN etc. */
	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
	val = 0;
	pshift = 12;
	if (slb_v & SLB_VSID_L) {
		mask |= HPTE_V_LARGE;
		val |= HPTE_V_LARGE;
		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
	}
	if (slb_v & SLB_VSID_B_1T) {
		somask = (1UL << 40) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
		vsid ^= vsid << 25;
	} else {
		somask = (1UL << 28) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
	}
	hash = (vsid ^ ((eaddr & somask) >> pshift)) & HPT_HASH_MASK;
	avpn = slb_v & ~(somask >> 16);	/* also includes B */
	avpn |= (eaddr & somask) >> 16;

	if (pshift >= 24)
		avpn &= ~((1UL << (pshift - 16)) - 1);
	else
		avpn &= ~0x7fUL;
	val |= avpn;

	for (;;) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));

		for (i = 0; i < 16; i += 2) {
			/* Read the PTE racily */
			v = hpte[i] & ~HPTE_V_HVLOCK;

			/* Check valid/absent, hash, segment size and AVPN */
			if (!(v & valid) || (v & mask) != val)
				continue;

			/* Lock the PTE and read it under the lock */
			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
				cpu_relax();
			v = hpte[i] & ~HPTE_V_HVLOCK;
			r = hpte[i+1];

			/*
			 * Check the HPTE again, including large page size
			 * Since we don't currently allow any MPSS (mixed
			 * page-size segment) page sizes, it is sufficient
			 * to check against the actual page size.
			 */
			if ((v & valid) && (v & mask) == val &&
			    hpte_page_size(v, r) == (1ul << pshift))
				/* Return with the HPTE still locked */
				return (hash << 3) + (i >> 1);

			/* Unlock and move on */
			hpte[i] = v;
		}

		if (val & HPTE_V_SECONDARY)
			break;
		val |= HPTE_V_SECONDARY;
		hash = hash ^ HPT_HASH_MASK;
	}
	return -1;
}
EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);

/*
 * Called in real mode to check whether an HPTE not found fault
681
 * is due to accessing a paged-out page or an emulated MMIO page.
682 683 684
 * Returns a possibly modified status (DSISR) value if not
 * (i.e. pass the interrupt to the guest),
 * -1 to pass the fault up to host kernel mode code, -2 to do that
685
 * and also load the instruction word (for MMIO emulation),
686 687 688
 * or 0 if we should make the guest retry the access.
 */
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
689
			  unsigned long slb_v, unsigned int status, bool data)
690 691 692 693 694 695 696 697 698 699
{
	struct kvm *kvm = vcpu->kvm;
	long int index;
	unsigned long v, r, gr;
	unsigned long *hpte;
	unsigned long valid;
	struct revmap_entry *rev;
	unsigned long pp, key;

	valid = HPTE_V_VALID | HPTE_V_ABSENT;
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
	if (index < 0)
		return status;		/* there really was no HPTE */

	hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
	v = hpte[0] & ~HPTE_V_HVLOCK;
	r = hpte[1];
	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
	gr = rev->guest_rpte;

	/* Unlock the HPTE */
	asm volatile("lwsync" : : : "memory");
	hpte[0] = v;

	/* If the HPTE is valid by now, retry the instruction */
	if (v & HPTE_V_VALID)
		return 0;

	/* Check access permissions to the page */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
722 723 724 725 726 727 728
	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
	if (!data) {
		if (gr & (HPTE_R_N | HPTE_R_G))
			return status | SRR1_ISI_N_OR_G;
		if (!hpte_read_permission(pp, slb_v & key))
			return status | SRR1_ISI_PROT;
	} else if (status & DSISR_ISSTORE) {
729 730
		/* check write permission */
		if (!hpte_write_permission(pp, slb_v & key))
731
			return status | DSISR_PROTFAULT;
732 733
	} else {
		if (!hpte_read_permission(pp, slb_v & key))
734
			return status | DSISR_PROTFAULT;
735 736 737
	}

	/* Check storage key, if applicable */
738
	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
739 740 741 742
		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (status & DSISR_ISSTORE)
			perm >>= 1;
		if (perm & 1)
743
			return status | DSISR_KEYFAULT;
744 745 746 747 748 749 750 751
	}

	/* Save HPTE info for virtual-mode handler */
	vcpu->arch.pgfault_addr = addr;
	vcpu->arch.pgfault_index = index;
	vcpu->arch.pgfault_hpte[0] = v;
	vcpu->arch.pgfault_hpte[1] = r;

752 753 754 755
	/* Check the storage key to see if it is possibly emulated MMIO */
	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
756 757 758 759
		return -2;	/* MMIO emulation - load instr word */

	return -1;		/* send fault up to host kernel mode */
}