fs-writeback.c 70.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35
/*
 * 4MB minimal write chunk size
 */
36
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128 129 130
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
178
{
179
	trace_writeback_queue(wb, work);
180

181
	spin_lock_bh(&wb->work_lock);
182
	if (!test_bit(WB_registered, &wb->state))
J
Jan Kara 已提交
183
		goto out_unlock;
184 185
	if (work->done)
		atomic_inc(&work->done->cnt);
186 187
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
188
out_unlock:
189
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

210 211
#ifdef CONFIG_CGROUP_WRITEBACK

212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

226 227 228
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

285
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
286 287 288 289
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
290 291

		spin_unlock(&wb->list_lock);
292
		wb_put(wb);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

312 313 314 315 316 317 318 319 320 321 322 323 324
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
325 326
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
327
	struct bdi_writeback *new_wb = isw->new_wb;
328 329 330
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
331 332 333 334 335 336

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
337 338 339 340
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
341
	 */
342 343 344 345 346 347 348
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
349
	spin_lock(&inode->i_lock);
350 351 352 353
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
354
	 * the inode and we shouldn't modify ->i_io_list.
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
393
	if (!list_empty(&inode->i_io_list)) {
394 395
		struct inode *pos;

396
		inode_io_list_del_locked(inode, old_wb);
397
		inode->i_wb = new_wb;
398
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 400 401
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
402
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 404 405
	} else {
		inode->i_wb = new_wb;
	}
406

407
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 409 410
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
411 412
	switched = true;
skip_switch:
413 414 415 416 417 418
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

419
	spin_unlock_irq(&mapping->tree_lock);
420
	spin_unlock(&inode->i_lock);
421 422
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
423

424 425 426 427
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
428
	wb_put(new_wb);
429 430

	iput(inode);
431
	kfree(isw);
432 433

	atomic_dec(&isw_nr_in_flight);
434 435 436 437 438 439 440 441 442
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443
	queue_work(isw_wq, &isw->work);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
479 480 481 482 483 484
	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
485
	inode->i_state |= I_WB_SWITCH;
486
	__iget(inode);
487 488 489 490
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

491 492
	atomic_inc(&isw_nr_in_flight);

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

508 509 510 511 512 513 514 515 516 517 518 519 520
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
521 522 523 524 525
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

526
	wbc->wb = inode_to_wb(inode);
527 528 529 530 531 532 533 534 535
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

536 537
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
538 539 540 541 542 543 544

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
545 546 547
}

/**
548 549
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
550 551 552
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
583 584 585
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
586 587
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
588 589
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
590 591
	int max_id;

592 593 594 595 596 597
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
650 651
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
652 653 654 655 656 657 658 659 660 661
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

662 663 664 665
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
708
EXPORT_SYMBOL_GPL(wbc_account_io);
709

710 711
/**
 * inode_congested - test whether an inode is congested
712
 * @inode: inode to test for congestion (may be NULL)
713 714 715 716 717 718 719 720 721
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
722 723 724
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
725 726 727
 */
int inode_congested(struct inode *inode, int cong_bits)
{
728 729 730 731
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
732
	if (inode && inode_to_wb_is_valid(inode)) {
733 734 735 736 737 738 739
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
740 741 742 743 744 745
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
789
	struct bdi_writeback *last_wb = NULL;
790 791
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
792 793 794 795

	might_sleep();
restart:
	rcu_read_lock();
796
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 798 799 800 801
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

802 803 804 805 806
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

807 808 809 810 811 812
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
813 814
			continue;

815 816 817 818 819 820 821 822 823
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
824
		}
825 826 827 828 829 830 831 832 833 834

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

835 836 837 838 839 840 841 842
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

843 844 845
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
846 847
	}
	rcu_read_unlock();
848 849 850

	if (last_wb)
		wb_put(last_wb);
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
		synchronize_rcu();
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

880 881
#else	/* CONFIG_CGROUP_WRITEBACK */

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

903 904 905 906 907
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

908 909 910 911 912 913
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

914
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 916 917 918 919
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

920 921
#endif	/* CONFIG_CGROUP_WRITEBACK */

922 923
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
924
{
925 926 927 928 929 930 931 932 933
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
934 935
	work = kzalloc(sizeof(*work),
		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
936
	if (!work) {
937
		trace_writeback_nowork(wb);
938 939 940 941 942 943 944 945
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
946
	work->auto_free	= 1;
947 948

	wb_queue_work(wb, work);
949
}
950

951
/**
952 953
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
954 955
 *
 * Description:
956
 *   This makes sure WB_SYNC_NONE background writeback happens. When
957
 *   this function returns, it is only guaranteed that for given wb
958 959
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
960
 */
961
void wb_start_background_writeback(struct bdi_writeback *wb)
962
{
963 964 965 966
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
967
	trace_writeback_wake_background(wb);
968
	wb_wakeup(wb);
L
Linus Torvalds 已提交
969 970
}

971 972 973
/*
 * Remove the inode from the writeback list it is on.
 */
974
void inode_io_list_del(struct inode *inode)
975
{
976
	struct bdi_writeback *wb;
977

978
	wb = inode_to_wb_and_lock_list(inode);
979
	inode_io_list_del_locked(inode, wb);
980
	spin_unlock(&wb->list_lock);
981 982
}

983 984 985 986 987 988 989 990 991 992
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
993
		if (list_empty(&inode->i_wb_list)) {
994
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
995 996
			trace_sb_mark_inode_writeback(inode);
		}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011 1012 1013 1014
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1015 1016 1017 1018
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1019 1020 1021 1022 1023
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 1026 1027
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1028
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029
{
1030
	if (!list_empty(&wb->b_dirty)) {
1031
		struct inode *tail;
1032

N
Nick Piggin 已提交
1033
		tail = wb_inode(wb->b_dirty.next);
1034
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035 1036
			inode->dirtied_when = jiffies;
	}
1037
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038 1039
}

1040
/*
1041
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042
 */
1043
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044
{
1045
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046 1047
}

J
Joern Engel 已提交
1048 1049
static void inode_sync_complete(struct inode *inode)
{
1050
	inode->i_state &= ~I_SYNC;
1051 1052
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1053
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1054 1055 1056 1057
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1058 1059 1060 1061 1062 1063 1064 1065
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1066
	 * from permanently stopping the whole bdi writeback.
1067 1068 1069 1070 1071 1072
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1073 1074
#define EXPIRE_DIRTY_ATIME 0x0001

1075
/*
1076
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1077
 * @delaying_queue to @dispatch_queue.
1078
 */
1079
static int move_expired_inodes(struct list_head *delaying_queue,
1080
			       struct list_head *dispatch_queue,
1081
			       int flags,
1082
			       struct wb_writeback_work *work)
1083
{
1084 1085
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1086 1087
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1088
	struct super_block *sb = NULL;
1089
	struct inode *inode;
1090
	int do_sb_sort = 0;
1091
	int moved = 0;
1092

1093 1094
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1095 1096
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097 1098
		older_than_this = &expire_time;
	}
1099
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1100
		inode = wb_inode(delaying_queue->prev);
1101 1102
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1103
			break;
1104
		list_move(&inode->i_io_list, &tmp);
1105
		moved++;
1106 1107
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108 1109
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1110 1111 1112
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1113 1114
	}

1115 1116 1117
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1118
		goto out;
1119 1120
	}

1121 1122
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1123
		sb = wb_inode(tmp.prev)->i_sb;
1124
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1125
			inode = wb_inode(pos);
1126
			if (inode->i_sb == sb)
1127
				list_move(&inode->i_io_list, dispatch_queue);
1128
		}
1129
	}
1130 1131
out:
	return moved;
1132 1133 1134 1135
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1136 1137 1138 1139 1140 1141 1142 1143
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1144
 */
1145
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146
{
1147
	int moved;
1148

1149
	assert_spin_locked(&wb->list_lock);
1150
	list_splice_init(&wb->b_more_io, &wb->b_io);
1151 1152 1153
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1154 1155
	if (moved)
		wb_io_lists_populated(wb);
1156
	trace_writeback_queue_io(wb, work, moved);
1157 1158
}

1159
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160
{
T
Tejun Heo 已提交
1161 1162 1163 1164 1165 1166 1167 1168
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1169
	return 0;
1170 1171
}

L
Linus Torvalds 已提交
1172
/*
1173 1174
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1175
 */
1176 1177 1178
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1179 1180 1181 1182 1183
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184 1185
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1186 1187
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1188
		spin_lock(&inode->i_lock);
1189
	}
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1279
	} else if (inode->i_state & I_DIRTY_TIME) {
1280
		inode->dirtied_when = jiffies;
1281
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282 1283
	} else {
		/* The inode is clean. Remove from writeback lists. */
1284
		inode_io_list_del_locked(inode, wb);
1285 1286 1287
	}
}

1288
/*
1289 1290 1291
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1292 1293
 */
static int
1294
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1295 1296
{
	struct address_space *mapping = inode->i_mapping;
1297
	long nr_to_write = wbc->nr_to_write;
1298
	unsigned dirty;
L
Linus Torvalds 已提交
1299 1300
	int ret;

1301
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1302

T
Tejun Heo 已提交
1303 1304
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1305 1306
	ret = do_writepages(mapping, wbc);

1307 1308 1309
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1310 1311 1312
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1313
	 */
1314
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1316 1317 1318 1319
		if (ret == 0)
			ret = err;
	}

1320 1321 1322 1323 1324
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1325
	spin_lock(&inode->i_lock);
1326

1327
	dirty = inode->i_state & I_DIRTY;
1328 1329
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330
		    wbc->sync_mode == WB_SYNC_ALL ||
1331 1332 1333 1334 1335 1336 1337 1338 1339
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340
	inode->i_state &= ~dirty;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1358
	spin_unlock(&inode->i_lock);
1359

1360 1361
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1362
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363
	if (dirty & ~I_DIRTY_PAGES) {
1364
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1365 1366 1367
		if (ret == 0)
			ret = err;
	}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1380 1381
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1382
{
1383
	struct bdi_writeback *wb;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1396 1397 1398
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1399
		 */
1400
		__inode_wait_for_writeback(inode);
1401 1402 1403
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1404 1405 1406 1407 1408 1409
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1410
	 */
1411
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1412 1413
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414 1415
		goto out;
	inode->i_state |= I_SYNC;
1416
	wbc_attach_and_unlock_inode(wbc, inode);
1417

1418
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1419

1420
	wbc_detach_inode(wbc);
1421 1422

	wb = inode_to_wb_and_lock_list(inode);
1423
	spin_lock(&inode->i_lock);
1424 1425 1426 1427
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1428
	if (!(inode->i_state & I_DIRTY_ALL))
1429
		inode_io_list_del_locked(inode, wb);
1430
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1431
	inode_sync_complete(inode);
1432 1433
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1434 1435 1436
	return ret;
}

1437
static long writeback_chunk_size(struct bdi_writeback *wb,
1438
				 struct wb_writeback_work *work)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1457
	else {
1458
		pages = min(wb->avg_write_bandwidth / 2,
1459
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460 1461 1462 1463
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1464 1465 1466 1467

	return pages;
}

1468 1469
/*
 * Write a portion of b_io inodes which belong to @sb.
1470
 *
1471
 * Return the number of pages and/or inodes written.
1472 1473 1474 1475
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1476
 */
1477 1478 1479
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1480
{
1481 1482 1483 1484 1485
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1486
		.for_sync		= work->for_sync,
1487 1488 1489 1490 1491 1492 1493 1494
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1495
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1496
		struct inode *inode = wb_inode(wb->b_io.prev);
1497
		struct bdi_writeback *tmp_wb;
1498 1499

		if (inode->i_sb != sb) {
1500
			if (work->sb) {
1501 1502 1503 1504 1505
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1506
				redirty_tail(inode, wb);
1507 1508 1509 1510 1511 1512 1513 1514
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1515
			break;
1516 1517
		}

1518
		/*
W
Wanpeng Li 已提交
1519 1520
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1521 1522
		 * kind writeout is handled by the freer.
		 */
1523
		spin_lock(&inode->i_lock);
1524
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525
			spin_unlock(&inode->i_lock);
1526
			redirty_tail(inode, wb);
1527 1528
			continue;
		}
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1544 1545
		spin_unlock(&wb->list_lock);

1546 1547 1548 1549 1550
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1551 1552 1553 1554
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1555
			spin_lock(&wb->list_lock);
1556 1557
			continue;
		}
1558
		inode->i_state |= I_SYNC;
1559
		wbc_attach_and_unlock_inode(&wbc, inode);
1560

1561
		write_chunk = writeback_chunk_size(wb, work);
1562 1563
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1564

1565 1566 1567 1568
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1569
		__writeback_single_inode(inode, &wbc);
1570

1571
		wbc_detach_inode(&wbc);
1572 1573
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1588 1589 1590 1591 1592
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1593
		spin_lock(&inode->i_lock);
1594
		if (!(inode->i_state & I_DIRTY_ALL))
1595
			wrote++;
1596
		requeue_inode(inode, tmp_wb, &wbc);
1597
		inode_sync_complete(inode);
1598
		spin_unlock(&inode->i_lock);
1599

1600 1601 1602 1603 1604
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1605 1606 1607 1608 1609 1610 1611 1612 1613
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1614
		}
L
Linus Torvalds 已提交
1615
	}
1616
	return wrote;
1617 1618
}

1619 1620
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1621
{
1622 1623
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1624

1625
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1626
		struct inode *inode = wb_inode(wb->b_io.prev);
1627
		struct super_block *sb = inode->i_sb;
1628

1629
		if (!trylock_super(sb)) {
1630
			/*
1631
			 * trylock_super() may fail consistently due to
1632 1633 1634 1635
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1636
			continue;
1637
		}
1638
		wrote += writeback_sb_inodes(sb, wb, work);
1639
		up_read(&sb->s_umount);
1640

1641 1642 1643 1644 1645 1646 1647
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1648
	}
1649
	/* Leave any unwritten inodes on b_io */
1650
	return wrote;
1651 1652
}

1653
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654
				enum wb_reason reason)
1655
{
1656 1657 1658 1659
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1660
		.reason		= reason,
1661
	};
1662
	struct blk_plug plug;
1663

1664
	blk_start_plug(&plug);
1665
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1666
	if (list_empty(&wb->b_io))
1667
		queue_io(wb, &work);
1668
	__writeback_inodes_wb(wb, &work);
1669
	spin_unlock(&wb->list_lock);
1670
	blk_finish_plug(&plug);
1671

1672 1673
	return nr_pages - work.nr_pages;
}
1674 1675 1676

/*
 * Explicit flushing or periodic writeback of "old" data.
1677
 *
1678 1679 1680 1681
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1682
 *
1683 1684 1685
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1686
 *
1687 1688
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1689
 */
1690
static long wb_writeback(struct bdi_writeback *wb,
1691
			 struct wb_writeback_work *work)
1692
{
1693
	unsigned long wb_start = jiffies;
1694
	long nr_pages = work->nr_pages;
1695
	unsigned long oldest_jif;
J
Jan Kara 已提交
1696
	struct inode *inode;
1697
	long progress;
1698
	struct blk_plug plug;
1699

1700 1701
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1702

1703
	blk_start_plug(&plug);
1704
	spin_lock(&wb->list_lock);
1705 1706
	for (;;) {
		/*
1707
		 * Stop writeback when nr_pages has been consumed
1708
		 */
1709
		if (work->nr_pages <= 0)
1710
			break;
1711

1712 1713 1714 1715 1716 1717 1718
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1719
		    !list_empty(&wb->work_list))
1720 1721
			break;

N
Nick Piggin 已提交
1722
		/*
1723 1724
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1725
		 */
1726
		if (work->for_background && !wb_over_bg_thresh(wb))
1727
			break;
N
Nick Piggin 已提交
1728

1729 1730 1731 1732 1733 1734
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1735
		if (work->for_kupdate) {
1736
			oldest_jif = jiffies -
1737
				msecs_to_jiffies(dirty_expire_interval * 10);
1738
		} else if (work->for_background)
1739
			oldest_jif = jiffies;
1740

1741
		trace_writeback_start(wb, work);
1742
		if (list_empty(&wb->b_io))
1743
			queue_io(wb, work);
1744
		if (work->sb)
1745
			progress = writeback_sb_inodes(work->sb, wb, work);
1746
		else
1747
			progress = __writeback_inodes_wb(wb, work);
1748
		trace_writeback_written(wb, work);
1749

1750
		wb_update_bandwidth(wb, wb_start);
1751 1752

		/*
1753 1754 1755 1756 1757 1758
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1759
		 */
1760
		if (progress)
1761 1762
			continue;
		/*
1763
		 * No more inodes for IO, bail
1764
		 */
1765
		if (list_empty(&wb->b_more_io))
1766
			break;
1767 1768 1769 1770 1771 1772
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1773
			trace_writeback_wait(wb, work);
N
Nick Piggin 已提交
1774
			inode = wb_inode(wb->b_more_io.prev);
1775
			spin_lock(&inode->i_lock);
1776
			spin_unlock(&wb->list_lock);
1777 1778
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1779
			spin_lock(&wb->list_lock);
1780 1781
		}
	}
1782
	spin_unlock(&wb->list_lock);
1783
	blk_finish_plug(&plug);
1784

1785
	return nr_pages - work->nr_pages;
1786 1787 1788
}

/*
1789
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1790
 */
1791
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1792
{
1793
	struct wb_writeback_work *work = NULL;
1794

1795 1796 1797
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1798 1799
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1800
	}
1801
	spin_unlock_bh(&wb->work_lock);
1802
	return work;
1803 1804
}

1805 1806 1807 1808 1809 1810
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
1811 1812
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
1813 1814 1815
		get_nr_dirty_inodes();
}

1816 1817
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1818
	if (wb_over_bg_thresh(wb)) {
1819 1820 1821 1822 1823 1824

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1825
			.reason		= WB_REASON_BACKGROUND,
1826 1827 1828 1829 1830 1831 1832 1833
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1834 1835 1836 1837 1838
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1839 1840 1841 1842 1843 1844
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1845 1846 1847 1848 1849 1850
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1851
	nr_pages = get_nr_dirty_pages();
1852

1853
	if (nr_pages) {
1854
		struct wb_writeback_work work = {
1855 1856 1857 1858
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1859
			.reason		= WB_REASON_PERIODIC,
1860 1861
		};

1862
		return wb_writeback(wb, &work);
1863
	}
1864 1865 1866 1867 1868 1869 1870

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1871
static long wb_do_writeback(struct bdi_writeback *wb)
1872
{
1873
	struct wb_writeback_work *work;
1874
	long wrote = 0;
1875

1876
	set_bit(WB_writeback_running, &wb->state);
1877
	while ((work = get_next_work_item(wb)) != NULL) {
1878
		struct wb_completion *done = work->done;
1879

1880
		trace_writeback_exec(wb, work);
1881

1882
		wrote += wb_writeback(wb, work);
1883

1884
		if (work->auto_free)
1885
			kfree(work);
1886 1887
		if (done && atomic_dec_and_test(&done->cnt))
			wake_up_all(&wb->bdi->wb_waitq);
1888 1889 1890 1891 1892 1893
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1894
	wrote += wb_check_background_flush(wb);
1895
	clear_bit(WB_writeback_running, &wb->state);
1896 1897 1898 1899 1900 1901

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1902
 * reschedules periodically and does kupdated style flushing.
1903
 */
1904
void wb_workfn(struct work_struct *work)
1905
{
1906 1907
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1908 1909
	long pages_written;

1910
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1911
	current->flags |= PF_SWAPWRITE;
1912

1913
	if (likely(!current_is_workqueue_rescuer() ||
1914
		   !test_bit(WB_registered, &wb->state))) {
1915
		/*
1916
		 * The normal path.  Keep writing back @wb until its
1917
		 * work_list is empty.  Note that this path is also taken
1918
		 * if @wb is shutting down even when we're running off the
1919
		 * rescuer as work_list needs to be drained.
1920
		 */
1921
		do {
1922
			pages_written = wb_do_writeback(wb);
1923
			trace_writeback_pages_written(pages_written);
1924
		} while (!list_empty(&wb->work_list));
1925 1926 1927 1928 1929 1930
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1931
		pages_written = writeback_inodes_wb(wb, 1024,
1932
						    WB_REASON_FORKER_THREAD);
1933
		trace_writeback_pages_written(pages_written);
1934 1935
	}

1936
	if (!list_empty(&wb->work_list))
1937 1938
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1939
		wb_wakeup_delayed(wb);
1940

1941
	current->flags &= ~PF_SWAPWRITE;
1942 1943 1944
}

/*
1945 1946
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1947
 */
1948
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1949
{
1950
	struct backing_dev_info *bdi;
1951

1952 1953 1954 1955 1956 1957
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

1958 1959
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1960

1961
	rcu_read_lock();
1962 1963 1964 1965 1966 1967
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;

		if (!bdi_has_dirty_io(bdi))
			continue;

1968
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1969 1970 1971
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1972
	rcu_read_unlock();
L
Linus Torvalds 已提交
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1999 2000
		struct bdi_writeback *wb;

2001
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2002 2003
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2055
 *
2056 2057 2058 2059 2060 2061 2062 2063 2064
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2065
 *
2066 2067 2068 2069 2070 2071
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2072
 */
2073
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2074
{
2075
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2076
	struct super_block *sb = inode->i_sb;
2077 2078 2079
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2080

2081 2082 2083 2084
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2085
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2086 2087
		trace_writeback_dirty_inode_start(inode, flags);

2088
		if (sb->s_op->dirty_inode)
2089
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2090 2091

		trace_writeback_dirty_inode(inode, flags);
2092
	}
2093 2094 2095
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2096 2097

	/*
2098 2099
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2100 2101 2102
	 */
	smp_mb();

2103 2104
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2105 2106 2107 2108 2109
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2110
	spin_lock(&inode->i_lock);
2111 2112
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2113 2114 2115
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2116 2117
		inode_attach_wb(inode, NULL);

2118 2119
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2120 2121 2122 2123 2124 2125 2126 2127
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2128
			goto out_unlock_inode;
2129 2130 2131 2132 2133 2134

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2135
			if (inode_unhashed(inode))
2136
				goto out_unlock_inode;
2137
		}
A
Al Viro 已提交
2138
		if (inode->i_state & I_FREEING)
2139
			goto out_unlock_inode;
2140 2141 2142 2143 2144 2145

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2146
			struct bdi_writeback *wb;
2147
			struct list_head *dirty_list;
2148
			bool wakeup_bdi = false;
2149

2150
			wb = locked_inode_to_wb_and_lock_list(inode);
2151

2152 2153 2154
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2155 2156

			inode->dirtied_when = jiffies;
2157 2158
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2159

2160
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2161
				dirty_list = &wb->b_dirty;
2162
			else
2163
				dirty_list = &wb->b_dirty_time;
2164

2165
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2166 2167
							       dirty_list);

2168
			spin_unlock(&wb->list_lock);
2169
			trace_writeback_dirty_inode_enqueue(inode);
2170

2171 2172 2173 2174 2175 2176
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2177 2178
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2179
			return;
L
Linus Torvalds 已提交
2180 2181
		}
	}
2182 2183
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2184

2185
#undef I_DIRTY_INODE
2186 2187 2188
}
EXPORT_SYMBOL(__mark_inode_dirty);

2189 2190 2191 2192 2193 2194 2195 2196 2197
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2198
static void wait_sb_inodes(struct super_block *sb)
2199
{
2200
	LIST_HEAD(sync_list);
2201 2202 2203 2204 2205

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2206
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2207

2208
	mutex_lock(&sb->s_sync_lock);
2209 2210

	/*
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2229
	 */
2230 2231 2232
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2233
		struct address_space *mapping = inode->i_mapping;
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2253
		spin_lock(&inode->i_lock);
2254
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2255
			spin_unlock(&inode->i_lock);
2256 2257

			spin_lock_irq(&sb->s_inode_wblist_lock);
2258
			continue;
2259
		}
2260
		__iget(inode);
2261
		spin_unlock(&inode->i_lock);
2262
		rcu_read_unlock();
2263

2264 2265 2266 2267 2268 2269
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2270 2271 2272

		cond_resched();

2273 2274 2275 2276
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2277
	}
2278 2279
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2280
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2281 2282
}

2283 2284
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2285
{
2286
	DEFINE_WB_COMPLETION_ONSTACK(done);
2287
	struct wb_writeback_work work = {
2288 2289 2290 2291 2292
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2293
		.reason			= reason,
2294
	};
2295
	struct backing_dev_info *bdi = sb->s_bdi;
2296

2297
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2298
		return;
2299
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2300

2301
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2302
	wb_wait_for_completion(bdi, &done);
2303
}
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2321 2322 2323 2324 2325
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2326
 * @reason: reason why some writeback work was initiated
2327 2328 2329 2330 2331
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2332
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2333
{
2334
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2335
}
2336
EXPORT_SYMBOL(writeback_inodes_sb);
2337

2338
/**
2339
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2340
 * @sb: the superblock
2341 2342
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2343
 *
2344
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2345 2346
 * Returns 1 if writeback was started, 0 if not.
 */
2347 2348
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2349
{
2350
	if (!down_read_trylock(&sb->s_umount))
2351
		return false;
2352

2353
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2354
	up_read(&sb->s_umount);
2355
	return true;
2356
}
2357
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2358

2359
/**
2360
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2361
 * @sb: the superblock
2362
 * @reason: reason why some writeback work was initiated
2363
 *
2364
 * Implement by try_to_writeback_inodes_sb_nr()
2365 2366
 * Returns 1 if writeback was started, 0 if not.
 */
2367
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2368
{
2369
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2370
}
2371
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2372

2373 2374
/**
 * sync_inodes_sb	-	sync sb inode pages
2375
 * @sb: the superblock
2376 2377
 *
 * This function writes and waits on any dirty inode belonging to this
2378
 * super_block.
2379
 */
2380
void sync_inodes_sb(struct super_block *sb)
2381
{
2382
	DEFINE_WB_COMPLETION_ONSTACK(done);
2383
	struct wb_writeback_work work = {
2384 2385 2386 2387
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2388
		.done		= &done,
2389
		.reason		= WB_REASON_SYNC,
2390
		.for_sync	= 1,
2391
	};
2392
	struct backing_dev_info *bdi = sb->s_bdi;
2393

2394 2395 2396 2397 2398 2399
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2400
		return;
2401 2402
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2403
	bdi_split_work_to_wbs(bdi, &work, false);
2404
	wb_wait_for_completion(bdi, &done);
2405

2406
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2407
}
2408
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2409 2410

/**
2411 2412 2413 2414 2415 2416
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2417
 *
2418
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2424
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2425 2426
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2427 2428 2429
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2430
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2431 2432

	might_sleep();
2433
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2450
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2451 2452
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2453 2454

/**
A
Andrew Morton 已提交
2455
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2456 2457 2458
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2459
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);