fs-writeback.c 63.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56 57
	unsigned int single_wait:1;
	unsigned int single_done:1;
58
	enum wb_reason reason;		/* why was writeback initiated? */
59

60
	struct list_head list;		/* pending work list */
61
	struct wb_completion *done;	/* set if the caller waits */
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


77 78 79 80 81 82 83 84 85 86 87 88
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
89 90 91 92 93
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

94 95 96 97 98 99 100 101
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

102 103
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

104 105 106 107 108 109
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
110
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 112
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
113 114 115 116 117 118 119
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121
		clear_bit(WB_has_dirty_io, &wb->state);
122 123
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
124
	}
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

170
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
171
{
172 173 174 175
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
176 177
}

178 179
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
180
{
181
	trace_writeback_queue(wb->bdi, work);
182

183
	spin_lock_bh(&wb->work_lock);
184 185 186
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
187
		goto out_unlock;
188
	}
189 190
	if (work->done)
		atomic_inc(&work->done->cnt);
191 192
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
193
out_unlock:
194
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

215 216
#ifdef CONFIG_CGROUP_WRITEBACK

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

		if (likely(wb == inode_to_wb(inode)))
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
	struct bdi_writeback *new_wb = isw->new_wb;

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
	 */
	spin_lock(&inode->i_lock);

	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;

	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

	spin_unlock(&inode->i_lock);

	iput(inode);
	wb_put(new_wb);
	kfree(isw);
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
	schedule_work(&isw->work);
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
	wbc->wb = inode_to_wb(inode);
434 435 436 437 438 439 440 441 442
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

443 444 445 446 447
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
}

/**
448 449
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
450 451 452
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
483 484 485
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
	u16 history = inode->i_wb_frn_history;
	unsigned long avg_time = inode->i_wb_frn_avg_time;
	unsigned long max_bytes, max_time;
	int max_id;

	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
545 546
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
547 548 549 550 551 552 553 554 555 556
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

557 558 559 560
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
	if (inode) {
		struct bdi_writeback *wb = inode_to_wb(inode);
		if (wb)
			return wb_congested(wb, cong_bits);
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

759 760
#else	/* CONFIG_CGROUP_WRITEBACK */

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

782 783 784 785 786
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

802 803
#endif	/* CONFIG_CGROUP_WRITEBACK */

804 805
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
806
{
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
827
	work->auto_free	= 1;
828 829

	wb_queue_work(wb, work);
830
}
831

832
/**
833 834
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
835 836
 *
 * Description:
837
 *   This makes sure WB_SYNC_NONE background writeback happens. When
838
 *   this function returns, it is only guaranteed that for given wb
839 840
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
841
 */
842
void wb_start_background_writeback(struct bdi_writeback *wb)
843
{
844 845 846 847
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
848 849
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
850 851
}

852 853 854 855 856
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
857
	struct bdi_writeback *wb;
858

859
	wb = inode_to_wb_and_lock_list(inode);
860
	inode_wb_list_del_locked(inode, wb);
861
	spin_unlock(&wb->list_lock);
862 863
}

864 865 866 867 868
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
869
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
870 871 872
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
873
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
874
{
875
	if (!list_empty(&wb->b_dirty)) {
876
		struct inode *tail;
877

N
Nick Piggin 已提交
878
		tail = wb_inode(wb->b_dirty.next);
879
		if (time_before(inode->dirtied_when, tail->dirtied_when))
880 881
			inode->dirtied_when = jiffies;
	}
882
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
883 884
}

885
/*
886
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
887
 */
888
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
889
{
890
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
891 892
}

J
Joern Engel 已提交
893 894
static void inode_sync_complete(struct inode *inode)
{
895
	inode->i_state &= ~I_SYNC;
896 897
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
898
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
899 900 901 902
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

903 904 905 906 907 908 909 910
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
911
	 * from permanently stopping the whole bdi writeback.
912 913 914 915 916 917
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

918 919
#define EXPIRE_DIRTY_ATIME 0x0001

920
/*
921
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
922
 * @delaying_queue to @dispatch_queue.
923
 */
924
static int move_expired_inodes(struct list_head *delaying_queue,
925
			       struct list_head *dispatch_queue,
926
			       int flags,
927
			       struct wb_writeback_work *work)
928
{
929 930
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
931 932
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
933
	struct super_block *sb = NULL;
934
	struct inode *inode;
935
	int do_sb_sort = 0;
936
	int moved = 0;
937

938 939
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
940 941
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
942 943
		older_than_this = &expire_time;
	}
944
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
945
		inode = wb_inode(delaying_queue->prev);
946 947
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
948
			break;
949 950
		list_move(&inode->i_wb_list, &tmp);
		moved++;
951 952
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
953 954
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
955 956 957
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
958 959
	}

960 961 962
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
963
		goto out;
964 965
	}

966 967
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
968
		sb = wb_inode(tmp.prev)->i_sb;
969
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
970
			inode = wb_inode(pos);
971
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
972
				list_move(&inode->i_wb_list, dispatch_queue);
973
		}
974
	}
975 976
out:
	return moved;
977 978 979 980
}

/*
 * Queue all expired dirty inodes for io, eldest first.
981 982 983 984 985 986 987 988
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
989
 */
990
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
991
{
992
	int moved;
993

994
	assert_spin_locked(&wb->list_lock);
995
	list_splice_init(&wb->b_more_io, &wb->b_io);
996 997 998
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
999 1000
	if (moved)
		wb_io_lists_populated(wb);
1001
	trace_writeback_queue_io(wb, work, moved);
1002 1003
}

1004
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1005
{
T
Tejun Heo 已提交
1006 1007 1008 1009 1010 1011 1012 1013
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1014
	return 0;
1015 1016
}

L
Linus Torvalds 已提交
1017
/*
1018 1019
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1020
 */
1021 1022 1023
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1024 1025 1026 1027 1028
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1029 1030
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1031 1032
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1033
		spin_lock(&inode->i_lock);
1034
	}
1035 1036
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1124
	} else if (inode->i_state & I_DIRTY_TIME) {
1125
		inode->dirtied_when = jiffies;
1126
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1127 1128
	} else {
		/* The inode is clean. Remove from writeback lists. */
1129
		inode_wb_list_del_locked(inode, wb);
1130 1131 1132
	}
}

1133
/*
1134 1135 1136
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1137 1138
 */
static int
1139
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1140 1141
{
	struct address_space *mapping = inode->i_mapping;
1142
	long nr_to_write = wbc->nr_to_write;
1143
	unsigned dirty;
L
Linus Torvalds 已提交
1144 1145
	int ret;

1146
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1147

T
Tejun Heo 已提交
1148 1149
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1150 1151
	ret = do_writepages(mapping, wbc);

1152 1153 1154
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1155 1156 1157
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1158
	 */
1159
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1160
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1161 1162 1163 1164
		if (ret == 0)
			ret = err;
	}

1165 1166 1167 1168 1169
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1170
	spin_lock(&inode->i_lock);
1171

1172
	dirty = inode->i_state & I_DIRTY;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1184
	inode->i_state &= ~dirty;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1202
	spin_unlock(&inode->i_lock);
1203

1204 1205
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1206
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1207
	if (dirty & ~I_DIRTY_PAGES) {
1208
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1209 1210 1211
		if (ret == 0)
			ret = err;
	}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1240 1241 1242
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1243
		 */
1244
		__inode_wait_for_writeback(inode);
1245 1246 1247
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1248 1249 1250 1251 1252 1253
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1254
	 */
1255
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1256 1257
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1258 1259
		goto out;
	inode->i_state |= I_SYNC;
1260
	wbc_attach_and_unlock_inode(wbc, inode);
1261

1262
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1263

1264
	wbc_detach_inode(wbc);
1265
	spin_lock(&wb->list_lock);
1266
	spin_lock(&inode->i_lock);
1267 1268 1269 1270
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1271
	if (!(inode->i_state & I_DIRTY_ALL))
1272
		inode_wb_list_del_locked(inode, wb);
1273
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1274
	inode_sync_complete(inode);
1275 1276
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1277 1278 1279
	return ret;
}

1280
static long writeback_chunk_size(struct bdi_writeback *wb,
1281
				 struct wb_writeback_work *work)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1300
	else {
1301
		pages = min(wb->avg_write_bandwidth / 2,
1302
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1303 1304 1305 1306
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1307 1308 1309 1310

	return pages;
}

1311 1312
/*
 * Write a portion of b_io inodes which belong to @sb.
1313
 *
1314
 * Return the number of pages and/or inodes written.
1315
 */
1316 1317 1318
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1319
{
1320 1321 1322 1323 1324
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1325
		.for_sync		= work->for_sync,
1326 1327 1328 1329 1330 1331 1332 1333
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1334
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1335
		struct inode *inode = wb_inode(wb->b_io.prev);
1336 1337

		if (inode->i_sb != sb) {
1338
			if (work->sb) {
1339 1340 1341 1342 1343
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1344
				redirty_tail(inode, wb);
1345 1346 1347 1348 1349 1350 1351 1352
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1353
			break;
1354 1355
		}

1356
		/*
W
Wanpeng Li 已提交
1357 1358
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1359 1360
		 * kind writeout is handled by the freer.
		 */
1361
		spin_lock(&inode->i_lock);
1362
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1363
			spin_unlock(&inode->i_lock);
1364
			redirty_tail(inode, wb);
1365 1366
			continue;
		}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1382 1383
		spin_unlock(&wb->list_lock);

1384 1385 1386 1387 1388
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1389 1390 1391 1392
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1393
			spin_lock(&wb->list_lock);
1394 1395
			continue;
		}
1396
		inode->i_state |= I_SYNC;
1397
		wbc_attach_and_unlock_inode(&wbc, inode);
1398

1399
		write_chunk = writeback_chunk_size(wb, work);
1400 1401
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1402

1403 1404 1405 1406
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1407
		__writeback_single_inode(inode, &wbc);
1408

1409
		wbc_detach_inode(&wbc);
1410 1411
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1412 1413
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1414
		if (!(inode->i_state & I_DIRTY_ALL))
1415
			wrote++;
1416 1417
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1418
		spin_unlock(&inode->i_lock);
1419
		cond_resched_lock(&wb->list_lock);
1420 1421 1422 1423 1424 1425 1426 1427 1428
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1429
		}
L
Linus Torvalds 已提交
1430
	}
1431
	return wrote;
1432 1433
}

1434 1435
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1436
{
1437 1438
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1439

1440
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1441
		struct inode *inode = wb_inode(wb->b_io.prev);
1442
		struct super_block *sb = inode->i_sb;
1443

1444
		if (!trylock_super(sb)) {
1445
			/*
1446
			 * trylock_super() may fail consistently due to
1447 1448 1449 1450
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1451
			continue;
1452
		}
1453
		wrote += writeback_sb_inodes(sb, wb, work);
1454
		up_read(&sb->s_umount);
1455

1456 1457 1458 1459 1460 1461 1462
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1463
	}
1464
	/* Leave any unwritten inodes on b_io */
1465
	return wrote;
1466 1467
}

1468
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1469
				enum wb_reason reason)
1470
{
1471 1472 1473 1474
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1475
		.reason		= reason,
1476
	};
1477

1478
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1479
	if (list_empty(&wb->b_io))
1480
		queue_io(wb, &work);
1481
	__writeback_inodes_wb(wb, &work);
1482
	spin_unlock(&wb->list_lock);
1483

1484 1485
	return nr_pages - work.nr_pages;
}
1486 1487 1488

/*
 * Explicit flushing or periodic writeback of "old" data.
1489
 *
1490 1491 1492 1493
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1494
 *
1495 1496 1497
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1498
 *
1499 1500
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1501
 */
1502
static long wb_writeback(struct bdi_writeback *wb,
1503
			 struct wb_writeback_work *work)
1504
{
1505
	unsigned long wb_start = jiffies;
1506
	long nr_pages = work->nr_pages;
1507
	unsigned long oldest_jif;
J
Jan Kara 已提交
1508
	struct inode *inode;
1509
	long progress;
1510

1511 1512
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1513

1514
	spin_lock(&wb->list_lock);
1515 1516
	for (;;) {
		/*
1517
		 * Stop writeback when nr_pages has been consumed
1518
		 */
1519
		if (work->nr_pages <= 0)
1520
			break;
1521

1522 1523 1524 1525 1526 1527 1528
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1529
		    !list_empty(&wb->work_list))
1530 1531
			break;

N
Nick Piggin 已提交
1532
		/*
1533 1534
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1535
		 */
1536
		if (work->for_background && !wb_over_bg_thresh(wb))
1537
			break;
N
Nick Piggin 已提交
1538

1539 1540 1541 1542 1543 1544
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1545
		if (work->for_kupdate) {
1546
			oldest_jif = jiffies -
1547
				msecs_to_jiffies(dirty_expire_interval * 10);
1548
		} else if (work->for_background)
1549
			oldest_jif = jiffies;
1550

1551
		trace_writeback_start(wb->bdi, work);
1552
		if (list_empty(&wb->b_io))
1553
			queue_io(wb, work);
1554
		if (work->sb)
1555
			progress = writeback_sb_inodes(work->sb, wb, work);
1556
		else
1557 1558
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1559

1560
		wb_update_bandwidth(wb, wb_start);
1561 1562

		/*
1563 1564 1565 1566 1567 1568
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1569
		 */
1570
		if (progress)
1571 1572
			continue;
		/*
1573
		 * No more inodes for IO, bail
1574
		 */
1575
		if (list_empty(&wb->b_more_io))
1576
			break;
1577 1578 1579 1580 1581 1582
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1583
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1584
			inode = wb_inode(wb->b_more_io.prev);
1585
			spin_lock(&inode->i_lock);
1586
			spin_unlock(&wb->list_lock);
1587 1588
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1589
			spin_lock(&wb->list_lock);
1590 1591
		}
	}
1592
	spin_unlock(&wb->list_lock);
1593

1594
	return nr_pages - work->nr_pages;
1595 1596 1597
}

/*
1598
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1599
 */
1600
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1601
{
1602
	struct wb_writeback_work *work = NULL;
1603

1604 1605 1606
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1607 1608
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1609
	}
1610
	spin_unlock_bh(&wb->work_lock);
1611
	return work;
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1625 1626
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1627
	if (wb_over_bg_thresh(wb)) {
1628 1629 1630 1631 1632 1633

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1634
			.reason		= WB_REASON_BACKGROUND,
1635 1636 1637 1638 1639 1640 1641 1642
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1643 1644 1645 1646 1647
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1648 1649 1650 1651 1652 1653
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1654 1655 1656 1657 1658 1659
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1660
	nr_pages = get_nr_dirty_pages();
1661

1662
	if (nr_pages) {
1663
		struct wb_writeback_work work = {
1664 1665 1666 1667
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1668
			.reason		= WB_REASON_PERIODIC,
1669 1670
		};

1671
		return wb_writeback(wb, &work);
1672
	}
1673 1674 1675 1676 1677 1678 1679

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1680
static long wb_do_writeback(struct bdi_writeback *wb)
1681
{
1682
	struct wb_writeback_work *work;
1683
	long wrote = 0;
1684

1685
	set_bit(WB_writeback_running, &wb->state);
1686
	while ((work = get_next_work_item(wb)) != NULL) {
1687
		struct wb_completion *done = work->done;
1688
		bool need_wake_up = false;
1689

1690
		trace_writeback_exec(wb->bdi, work);
1691

1692
		wrote += wb_writeback(wb, work);
1693

1694 1695 1696 1697 1698 1699 1700
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1701
			kfree(work);
1702 1703
		}

1704
		if (done && atomic_dec_and_test(&done->cnt))
1705 1706 1707
			need_wake_up = true;

		if (need_wake_up)
1708
			wake_up_all(&wb->bdi->wb_waitq);
1709 1710 1711 1712 1713 1714
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1715
	wrote += wb_check_background_flush(wb);
1716
	clear_bit(WB_writeback_running, &wb->state);
1717 1718 1719 1720 1721 1722

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1723
 * reschedules periodically and does kupdated style flushing.
1724
 */
1725
void wb_workfn(struct work_struct *work)
1726
{
1727 1728
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1729 1730
	long pages_written;

1731
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1732
	current->flags |= PF_SWAPWRITE;
1733

1734
	if (likely(!current_is_workqueue_rescuer() ||
1735
		   !test_bit(WB_registered, &wb->state))) {
1736
		/*
1737
		 * The normal path.  Keep writing back @wb until its
1738
		 * work_list is empty.  Note that this path is also taken
1739
		 * if @wb is shutting down even when we're running off the
1740
		 * rescuer as work_list needs to be drained.
1741
		 */
1742
		do {
1743
			pages_written = wb_do_writeback(wb);
1744
			trace_writeback_pages_written(pages_written);
1745
		} while (!list_empty(&wb->work_list));
1746 1747 1748 1749 1750 1751
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1752
		pages_written = writeback_inodes_wb(wb, 1024,
1753
						    WB_REASON_FORKER_THREAD);
1754
		trace_writeback_pages_written(pages_written);
1755 1756
	}

1757
	if (!list_empty(&wb->work_list))
1758 1759
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1760
		wb_wakeup_delayed(wb);
1761

1762
	current->flags &= ~PF_SWAPWRITE;
1763 1764 1765
}

/*
1766 1767
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1768
 */
1769
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1770
{
1771
	struct backing_dev_info *bdi;
1772

1773 1774
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1775

1776
	rcu_read_lock();
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1788
	rcu_read_unlock();
L
Linus Torvalds 已提交
1789 1790
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1815 1816 1817 1818 1819 1820
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1872
 *
1873 1874 1875 1876 1877 1878 1879 1880 1881
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1882
 *
1883 1884 1885 1886 1887 1888
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1889
 */
1890
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1891
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1892
{
1893
	struct super_block *sb = inode->i_sb;
1894 1895 1896
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1897

1898 1899 1900 1901
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
1902
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
1903 1904
		trace_writeback_dirty_inode_start(inode, flags);

1905
		if (sb->s_op->dirty_inode)
1906
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
1907 1908

		trace_writeback_dirty_inode(inode, flags);
1909
	}
1910 1911 1912
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
1913 1914

	/*
1915 1916
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
1917 1918 1919
	 */
	smp_mb();

1920 1921
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1922 1923 1924 1925 1926
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

1927
	spin_lock(&inode->i_lock);
1928 1929
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
1930 1931 1932
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

1933 1934
		inode_attach_wb(inode, NULL);

1935 1936
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
1937 1938 1939 1940 1941 1942 1943 1944
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
1945
			goto out_unlock_inode;
1946 1947 1948 1949 1950 1951

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
1952
			if (inode_unhashed(inode))
1953
				goto out_unlock_inode;
1954
		}
A
Al Viro 已提交
1955
		if (inode->i_state & I_FREEING)
1956
			goto out_unlock_inode;
1957 1958 1959 1960 1961 1962

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
1963
			struct bdi_writeback *wb;
1964
			struct list_head *dirty_list;
1965
			bool wakeup_bdi = false;
1966

1967
			wb = locked_inode_to_wb_and_lock_list(inode);
1968

1969 1970 1971
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
1972 1973

			inode->dirtied_when = jiffies;
1974 1975
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
1976

1977
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1978
				dirty_list = &wb->b_dirty;
1979
			else
1980
				dirty_list = &wb->b_dirty_time;
1981

1982
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1983 1984
							       dirty_list);

1985
			spin_unlock(&wb->list_lock);
1986
			trace_writeback_dirty_inode_enqueue(inode);
1987

1988 1989 1990 1991 1992 1993
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
1994 1995
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
1996
			return;
L
Linus Torvalds 已提交
1997 1998
		}
	}
1999 2000
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2001

2002 2003 2004
}
EXPORT_SYMBOL(__mark_inode_dirty);

2005
static void wait_sb_inodes(struct super_block *sb)
2006 2007 2008 2009 2010 2011 2012
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2013
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2014

2015
	spin_lock(&inode_sb_list_lock);
2016 2017 2018 2019 2020 2021 2022 2023

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2024
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2025
		struct address_space *mapping = inode->i_mapping;
2026

2027 2028 2029 2030
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2031
			continue;
2032
		}
2033
		__iget(inode);
2034
		spin_unlock(&inode->i_lock);
2035 2036
		spin_unlock(&inode_sb_list_lock);

2037
		/*
2038 2039 2040 2041 2042 2043
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
2044 2045 2046 2047 2048 2049 2050 2051
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

2052
		spin_lock(&inode_sb_list_lock);
2053
	}
2054
	spin_unlock(&inode_sb_list_lock);
2055
	iput(old_inode);
L
Linus Torvalds 已提交
2056 2057
}

2058 2059
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2060
{
2061
	DEFINE_WB_COMPLETION_ONSTACK(done);
2062
	struct wb_writeback_work work = {
2063 2064 2065 2066 2067
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2068
		.reason			= reason,
2069
	};
2070
	struct backing_dev_info *bdi = sb->s_bdi;
2071

2072
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2073
		return;
2074
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2075

2076
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2077
	wb_wait_for_completion(bdi, &done);
2078
}
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2096 2097 2098 2099 2100
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2101
 * @reason: reason why some writeback work was initiated
2102 2103 2104 2105 2106
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2107
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2108
{
2109
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2110
}
2111
EXPORT_SYMBOL(writeback_inodes_sb);
2112

2113
/**
2114
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2115
 * @sb: the superblock
2116 2117
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2118
 *
2119
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2120 2121
 * Returns 1 if writeback was started, 0 if not.
 */
2122 2123
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2124
{
2125
	if (!down_read_trylock(&sb->s_umount))
2126
		return false;
2127

2128
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2129
	up_read(&sb->s_umount);
2130
	return true;
2131
}
2132
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2133

2134
/**
2135
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2136
 * @sb: the superblock
2137
 * @reason: reason why some writeback work was initiated
2138
 *
2139
 * Implement by try_to_writeback_inodes_sb_nr()
2140 2141
 * Returns 1 if writeback was started, 0 if not.
 */
2142
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2143
{
2144
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2145
}
2146
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2147

2148 2149
/**
 * sync_inodes_sb	-	sync sb inode pages
2150
 * @sb: the superblock
2151 2152
 *
 * This function writes and waits on any dirty inode belonging to this
2153
 * super_block.
2154
 */
2155
void sync_inodes_sb(struct super_block *sb)
2156
{
2157
	DEFINE_WB_COMPLETION_ONSTACK(done);
2158
	struct wb_writeback_work work = {
2159 2160 2161 2162
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2163
		.done		= &done,
2164
		.reason		= WB_REASON_SYNC,
2165
		.for_sync	= 1,
2166
	};
2167
	struct backing_dev_info *bdi = sb->s_bdi;
2168

2169
	/* Nothing to do? */
2170
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2171
		return;
2172 2173
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2174
	bdi_split_work_to_wbs(bdi, &work, false);
2175
	wb_wait_for_completion(bdi, &done);
2176

2177
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2178
}
2179
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2180 2181

/**
2182 2183 2184 2185 2186 2187
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2188
 *
2189
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2190 2191 2192
 */
int write_inode_now(struct inode *inode, int sync)
{
2193
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2194 2195
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2196
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2197 2198
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2199 2200 2201
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2202
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2203 2204

	might_sleep();
2205
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2222
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2223 2224
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2225 2226

/**
A
Andrew Morton 已提交
2227
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2228 2229 2230
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2231
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);