hugetlbpage.c 25.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
21 22
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
23
#include <asm/setup.h>
24 25 26
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
27

28 29 30
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
31

B
Becky Bruce 已提交
32
unsigned int HPAGE_SHIFT;
33

B
Becky Bruce 已提交
34 35
/*
 * Tracks gpages after the device tree is scanned and before the
36 37 38 39
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
40
 */
41
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
42 43 44 45 46 47
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 49 50 51
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
52
#endif
53

54 55 56 57
#define hugepd_none(hpd)	((hpd).pd == 0)

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
58
	/* Only called for hugetlbfs pages, hence can ignore THP */
59
	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
60 61
}

62
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63
			   unsigned long address, unsigned pdshift, unsigned pshift)
64
{
B
Becky Bruce 已提交
65 66 67
	struct kmem_cache *cachep;
	pte_t *new;

68
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
69 70 71
	int i;
	int num_hugepd = 1 << (pshift - pdshift);
	cachep = hugepte_cache;
72 73
#else
	cachep = PGT_CACHE(pdshift - pshift);
B
Becky Bruce 已提交
74 75
#endif

76
	new = kmem_cache_zalloc(cachep, GFP_KERNEL);
77

78 79 80
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

81 82 83
	if (! new)
		return -ENOMEM;

84 85 86 87 88 89 90
	/*
	 * Make sure other cpus find the hugepd set only after a
	 * properly initialized page table is visible to them.
	 * For more details look for comment in __pte_alloc().
	 */
	smp_wmb();

91
	spin_lock(&mm->page_table_lock);
92
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
93 94 95 96 97 98 99 100 101 102
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		else
103
			/* We use the old format for PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
104 105 106 107 108 109 110 111
			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			hpdp->pd = 0;
		kmem_cache_free(cachep, new);
	}
112 113 114
#else
	if (!hugepd_none(*hpdp))
		kmem_cache_free(cachep, new);
115 116
	else {
#ifdef CONFIG_PPC_BOOK3S_64
117
		hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
118
#else
119
		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
120 121
#endif
	}
B
Becky Bruce 已提交
122
#endif
123 124 125 126
	spin_unlock(&mm->page_table_lock);
	return 0;
}

127 128 129 130 131 132 133 134 135 136 137 138
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

189
	return hugepte_offset(*hpdp, addr, pdshift);
190 191 192 193
}

#else

194
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
195
{
196 197 198 199 200 201 202 203 204 205
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
206 207

	if (pshift >= HUGEPD_PGD_SHIFT) {
208 209 210 211
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
212
		if (pshift >= HUGEPD_PUD_SHIFT) {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

229
	return hugepte_offset(*hpdp, addr, pdshift);
230
}
231
#endif
232

233
#ifdef CONFIG_PPC_FSL_BOOK3E
234
/* Build list of addresses of gigantic pages.  This function is used in early
235
 * boot before the buddy allocator is setup.
236
 */
B
Becky Bruce 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
260
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
261 262 263 264 265 266 267 268 269 270
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
271
	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
B
Becky Bruce 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

291
static int __init do_gpage_early_setup(char *param, char *val,
292
				       const char *unused, void *arg)
B
Becky Bruce 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
311 312 313 314 315 316 317
			if (npages > MAX_NUMBER_GPAGES) {
				pr_warn("MMU: %lu pages requested for page "
					"size %llu KB, limiting to "
					__stringify(MAX_NUMBER_GPAGES) "\n",
					npages, size / 1024);
				npages = MAX_NUMBER_GPAGES;
			}
B
Becky Bruce 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
340
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
341
			NULL, &do_gpage_early_setup);
B
Becky Bruce 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

362
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
363 364

/* Build list of addresses of gigantic pages.  This function is used in early
365
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
366 367
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
368 369 370 371 372 373 374 375 376 377 378
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

379
/* Moves the gigantic page addresses from the temporary list to the
380 381 382
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
383 384 385 386 387 388 389
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
390
	m->hstate = hstate;
391 392
	return 1;
}
B
Becky Bruce 已提交
393
#endif
394

395
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

423
	batchp = &get_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
424 425 426 427 428

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
429
		put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
443
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
444 445 446
}
#endif

447 448 449
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
450 451
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
452 453
	int i;

454
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
455 456
	unsigned int num_hugepd = 1;

457 458
#ifdef CONFIG_PPC_FSL_BOOK3E
	/* Note: On fsl the hpdp may be the first of several */
B
Becky Bruce 已提交
459
	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
460 461
#else
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
462
#endif
463 464 465 466 467 468 469 470 471 472 473

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
474

B
Becky Bruce 已提交
475 476 477
	for (i = 0; i < num_hugepd; i++, hpdp++)
		hpdp->pd = 0;

478
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
479
	hugepd_free(tlb, hugepte);
480 481
#else
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
B
Becky Bruce 已提交
482
#endif
483 484 485 486
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
487
				   unsigned long floor, unsigned long ceiling)
488 489 490 491 492 493 494
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
495
		pmd = pmd_offset(pud, addr);
496
		next = pmd_addr_end(addr, end);
497
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
498 499 500 501 502
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
503
			continue;
504
		}
505 506 507 508 509 510 511 512 513
#ifdef CONFIG_PPC_FSL_BOOK3E
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
#endif
514 515
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
516
	} while (addr = next, addr != end);
517 518 519 520 521 522 523 524

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
525
	}
526 527
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
528

529 530
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
531
	pmd_free_tlb(tlb, pmd, start);
532
	mm_dec_nr_pmds(tlb->mm);
533 534 535 536 537 538 539 540 541 542 543 544
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
545
		pud = pud_offset(pgd, addr);
546
		next = pud_addr_end(addr, end);
547
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
548 549
			if (pud_none_or_clear_bad(pud))
				continue;
550
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
551
					       ceiling);
552
		} else {
553 554 555 556 557 558 559 560 561
#ifdef CONFIG_PPC_FSL_BOOK3E
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
562 563
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
564
		}
565
	} while (addr = next, addr != end);
566 567 568 569 570 571 572 573 574 575 576 577 578 579

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
580
	pud_free_tlb(tlb, pud, start);
581 582 583 584 585
}

/*
 * This function frees user-level page tables of a process.
 */
586
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
587 588 589 590 591 592 593
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
594 595 596 597 598 599 600 601 602 603
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
604
	 *
605 606 607
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
608 609 610 611
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
612
		pgd = pgd_offset(tlb->mm, addr);
613
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
614 615 616 617
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
618
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
619 620
			/*
			 * Increment next by the size of the huge mapping since
621 622 623
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
624 625 626
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
627 628
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
629
		}
B
Becky Bruce 已提交
630
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
631 632
}

633 634 635 636
/*
 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 * To prevent hugepage split, disable irq.
 */
L
Linus Torvalds 已提交
637 638 639
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
640
	bool is_thp;
641
	pte_t *ptep, pte;
642
	unsigned shift;
643
	unsigned long mask, flags;
644 645 646
	struct page *page = ERR_PTR(-EINVAL);

	local_irq_save(flags);
647
	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
648 649 650
	if (!ptep)
		goto no_page;
	pte = READ_ONCE(*ptep);
651
	/*
652
	 * Verify it is a huge page else bail.
653 654 655
	 * Transparent hugepages are handled by generic code. We can skip them
	 * here.
	 */
656
	if (!shift || is_thp)
657
		goto no_page;
L
Linus Torvalds 已提交
658

659 660 661
	if (!pte_present(pte)) {
		page = NULL;
		goto no_page;
662
	}
663
	mask = (1UL << shift) - 1;
664
	page = pte_page(pte);
665 666
	if (page)
		page += (address & mask) / PAGE_SIZE;
L
Linus Torvalds 已提交
667

668
no_page:
669
	local_irq_restore(flags);
L
Linus Torvalds 已提交
670 671 672 673 674 675 676 677 678 679 680
	return page;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

681 682 683 684 685 686 687 688
struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
689 690 691 692 693 694 695
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

696 697
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
		unsigned long end, int write, struct page **pages, int *nr)
698 699
{
	pte_t *ptep;
700
	unsigned long sz = 1UL << hugepd_shift(hugepd);
D
David Gibson 已提交
701
	unsigned long next;
702 703 704

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
705
		next = hugepte_addr_end(addr, end, sz);
706 707
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
708
	} while (ptep++, addr = next, addr != end);
709 710 711

	return 1;
}
L
Linus Torvalds 已提交
712

713
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
714 715 716 717
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
718 719
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
720

721 722 723
	if (radix_enabled())
		return radix__hugetlb_get_unmapped_area(file, addr, len,
						       pgoff, flags);
724
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
725
}
726
#endif
L
Linus Torvalds 已提交
727

728 729
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
730
#ifdef CONFIG_PPC_MM_SLICES
731
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
732 733 734 735
	/* With radix we don't use slice, so derive it from vma*/
	if (!radix_enabled())
		return 1UL << mmu_psize_to_shift(psize);
#endif
B
Becky Bruce 已提交
736 737 738 739 740 741 742 743 744 745 746
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
747 748
}

749
static int __init add_huge_page_size(unsigned long long size)
750
{
751 752
	int shift = __ffs(size);
	int mmu_psize;
753

754
	/* Check that it is a page size supported by the hardware and
755
	 * that it fits within pagetable and slice limits. */
B
Becky Bruce 已提交
756 757 758 759
#ifdef CONFIG_PPC_FSL_BOOK3E
	if ((size < PAGE_SIZE) || !is_power_of_4(size))
		return -EINVAL;
#else
760 761 762
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
B
Becky Bruce 已提交
763
#endif
764

765 766 767 768 769 770 771 772 773 774 775 776
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
777 778 779 780 781 782 783 784
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

785 786 787 788
	if (add_huge_page_size(size) != 0) {
		hugetlb_bad_size();
		pr_err("Invalid huge page size specified(%llu)\n", size);
	}
789 790 791 792 793

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

794
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		/* Don't treat normal page sizes as huge... */
		if (shift != PAGE_SHIFT)
			if (add_huge_page_size(1ULL << shift) < 0)
				continue;
	}

	/*
	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
	 * size information encoded in them, so align them to allow this
	 */
	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
	if (hugepte_cache == NULL)
		panic("%s: Unable to create kmem cache for hugeptes\n",
		      __func__);

	/* Default hpage size = 4M */
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
	else
		panic("%s: Unable to set default huge page size\n", __func__);


	return 0;
}
#else
834 835
static int __init hugetlbpage_init(void)
{
836
	int psize;
837

838
	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
839
		return -ENODEV;
840

841 842 843
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
844

845 846
		if (!mmu_psize_defs[psize].shift)
			continue;
847

848 849 850 851 852 853 854 855 856 857 858
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
859 860 861 862 863 864 865 866 867 868
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
		if (pdshift != shift) {
			pgtable_cache_add(pdshift - shift, NULL);
			if (!PGT_CACHE(pdshift - shift))
				panic("hugetlbpage_init(): could not create "
				      "pgtable cache for %d bit pagesize\n", shift);
		}
869
	}
870

871 872 873 874 875 876 877
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
878 879 880
	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;

881

882 883
	return 0;
}
B
Becky Bruce 已提交
884
#endif
885
arch_initcall(hugetlbpage_init);
886 887 888 889

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
890
	void *start;
891 892 893

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
894 895 896 897
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
898
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
899
			__flush_dcache_icache(start);
900
			kunmap_atomic(start);
B
Becky Bruce 已提交
901 902
		}
	}
903
}
904 905 906 907 908 909 910

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
A
Aneesh Kumar K.V 已提交
911 912
 * (3) leaf pte for huge page _PAGE_PTE set
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
913 914 915
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
916 917
 * This function need to be called with interrupts disabled. We use this variant
 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
918
 */
919

920
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
921
				   bool *is_thp, unsigned *shift)
922
{
923 924 925
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
926 927 928 929 930 931 932
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

933 934 935
	if (is_thp)
		*is_thp = false;

936
	pgdp = pgdir + pgd_index(ea);
937
	pgd  = READ_ONCE(*pgdp);
938
	/*
939 940 941 942
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
943
	 */
944
	if (pgd_none(pgd))
945
		return NULL;
946 947
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
948
		goto out;
949
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
950
		hpdp = (hugepd_t *)&pgd;
951
	else {
952 953 954 955 956
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
957
		pdshift = PUD_SHIFT;
958
		pudp = pud_offset(&pgd, ea);
959
		pud  = READ_ONCE(*pudp);
960

961
		if (pud_none(pud))
962
			return NULL;
963 964
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
965
			goto out;
966
		} else if (is_hugepd(__hugepd(pud_val(pud))))
967
			hpdp = (hugepd_t *)&pud;
968
		else {
969
			pdshift = PMD_SHIFT;
970
			pmdp = pmd_offset(&pud, ea);
971
			pmd  = READ_ONCE(*pmdp);
972 973 974 975
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 */
976
			if (pmd_none(pmd))
977
				return NULL;
978

979 980 981 982 983 984 985 986
			if (pmd_trans_huge(pmd)) {
				if (is_thp)
					*is_thp = true;
				ret_pte = (pte_t *) pmdp;
				goto out;
			}

			if (pmd_huge(pmd)) {
987
				ret_pte = (pte_t *) pmdp;
988
				goto out;
989
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
990
				hpdp = (hugepd_t *)&pmd;
991
			else
992
				return pte_offset_kernel(&pmd, ea);
993 994 995 996 997
		}
	}
	if (!hpdp)
		return NULL;

998
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
999 1000 1001 1002 1003 1004
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
1005
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1006 1007 1008 1009 1010 1011

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
1012
	struct page *head, *page;
1013 1014 1015 1016 1017 1018 1019
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

1020
	pte = READ_ONCE(*ptep);
1021
	mask = _PAGE_PRESENT | _PAGE_READ;
1022 1023 1024 1025 1026

	/*
	 * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
	 * as 0 and _PAGE_RO has to be set when a page is not writable
	 */
1027
	if (write)
1028
		mask |= _PAGE_WRITE;
1029 1030
	else
		mask |= _PAGE_RO;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	return 1;
}