hrtimer.c 41.6 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63 64 65 66 67 68

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
69
ktime_t ktime_get_real(void)
70 71 72 73 74 75 76 77 78 79 80 81
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
82 83 84 85 86 87
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91 92

	.clock_base =
93
	{
94 95 96
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
97
			.resolution = KTIME_LOW_RES,
98 99 100 101
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
102
			.resolution = KTIME_LOW_RES,
103 104
		},
	}
105 106 107 108 109 110 111 112
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131

132 133 134 135
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 138
{
	ktime_t xtim, tomono;
139
	struct timespec xts, tom;
140 141 142 143
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
144
		xts = current_kernel_time();
145
		tom = wall_to_monotonic;
146 147
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
148
	xtim = timespec_to_ktime(xts);
149
	tomono = timespec_to_ktime(tom);
150 151 152
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
173 174 175
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
176
{
177
	struct hrtimer_clock_base *base;
178 179 180 181

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
182
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 184 185
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
186
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
187 188 189 190 191 192 193 194
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
195 196
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
197
{
198 199
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
200

201 202
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
203 204 205 206 207 208 209 210 211 212 213

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
214
		if (unlikely(hrtimer_callback_running(timer)))
215 216 217 218
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
219 220
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
221 222 223 224 225 226 227
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

228
static inline struct hrtimer_clock_base *
229 230
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
231
	struct hrtimer_clock_base *base = timer->base;
232

233
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
234 235 236 237

	return base;
}

238
# define switch_hrtimer_base(t, b)	(b)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
269 270

EXPORT_SYMBOL_GPL(ktime_add_ns);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 296 297 298 299
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
300
u64 ktime_divns(const ktime_t kt, s64 div)
301
{
302
	u64 dclc;
303 304
	int sft = 0;

305
	dclc = ktime_to_ns(kt);
306 307 308 309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
314
	return dclc;
315 316 317
}
#endif /* BITS_PER_LONG >= 64 */

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
503
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
525
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 527
	int res;

528
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
529

530 531 532
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
533
	 * the callback is executed in the hrtimer_interrupt context. The
534 535 536 537 538 539
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

540 541 542 543 544 545 546 547 548
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
608
	on_each_cpu(retrigger_next_event, NULL, 1);
609 610
}

611 612 613 614 615 616 617 618 619 620
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

637 638
static void __run_hrtimer(struct hrtimer *timer);

639 640 641 642 643 644 645 646 647 648
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
649 650 651 652 653 654 655 656
		/*
		 * XXX: recursion check?
		 * hrtimer_forward() should round up with timer granularity
		 * so that we never get into inf recursion here,
		 * it doesn't do that though
		 */
		__run_hrtimer(timer);
		return 1;
657 658 659 660 661 662 663
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
664
static int hrtimer_switch_to_hres(void)
665
{
I
Ingo Molnar 已提交
666 667
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
668 669 670
	unsigned long flags;

	if (base->hres_active)
671
		return 1;
672 673 674 675 676

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
677 678
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
679
		return 0;
680 681 682 683 684 685 686 687 688 689
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
690
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
691
	       smp_processor_id());
692
	return 1;
693 694 695 696 697 698
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
699
static inline int hrtimer_switch_to_hres(void) { return 0; }
700 701 702 703 704 705 706 707
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
708 709 710 711 712
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
{
	return 0;
}
713 714 715

#endif /* CONFIG_HIGH_RES_TIMERS */

716 717 718 719 720 721 722 723 724 725 726 727
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

728
/*
729
 * Counterpart to lock_hrtimer_base above:
730 731 732 733
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
734
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
735 736 737 738 739
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
740
 * @now:	forward past this time
741 742 743
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
744
 * Returns the number of overruns.
745
 */
D
Davide Libenzi 已提交
746
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
747
{
D
Davide Libenzi 已提交
748
	u64 orun = 1;
749
	ktime_t delta;
750

751
	delta = ktime_sub(now, hrtimer_get_expires(timer));
752 753 754 755

	if (delta.tv64 < 0)
		return 0;

756 757 758
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

759
	if (unlikely(delta.tv64 >= interval.tv64)) {
760
		s64 incr = ktime_to_ns(interval);
761 762

		orun = ktime_divns(delta, incr);
763 764
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
765 766 767 768 769 770 771
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
772
	hrtimer_add_expires(timer, interval);
773 774 775

	return orun;
}
S
Stas Sergeev 已提交
776
EXPORT_SYMBOL_GPL(hrtimer_forward);
777 778 779 780 781 782 783

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
784
static void enqueue_hrtimer(struct hrtimer *timer,
785
			    struct hrtimer_clock_base *base, int reprogram)
786 787 788 789
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
790
	int leftmost = 1;
791

792 793
	debug_hrtimer_activate(timer);

794 795 796 797 798 799 800 801 802 803
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
804 805
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
806
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
807
		} else {
808
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
809 810
			leftmost = 0;
		}
811 812 813
	}

	/*
814 815
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
816
	 */
I
Ingo Molnar 已提交
817
	if (leftmost) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

832 833
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
834 835 836 837 838
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
839
}
840 841 842 843 844

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
845 846 847 848 849
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
850
 */
851
static void __remove_hrtimer(struct hrtimer *timer,
852
			     struct hrtimer_clock_base *base,
853
			     unsigned long newstate, int reprogram)
854
{
855
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
856 857 858 859 860 861 862 863 864 865 866 867
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
868
	timer->state = newstate;
869 870 871 872 873 874
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
875
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
876
{
877
	if (hrtimer_is_queued(timer)) {
878 879 880 881 882 883 884 885 886 887
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
888
		debug_hrtimer_deactivate(timer);
889
		timer_stats_hrtimer_clear_start_info(timer);
890 891 892
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
893 894 895 896 897 898
		return 1;
	}
	return 0;
}

/**
T
Thomas Gleixner 已提交
899
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
900 901
 * @timer:	the timer to be added
 * @tim:	expiry time
902
 * @delta_ns:	"slack" range for the timer
903 904 905 906 907 908 909
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
910 911
hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
			const enum hrtimer_mode mode)
912
{
913
	struct hrtimer_clock_base *base, *new_base;
914
	unsigned long flags;
915
	int ret;
916 917 918 919 920 921 922 923 924

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

925
	if (mode == HRTIMER_MODE_REL) {
926
		tim = ktime_add_safe(tim, new_base->get_time());
927 928 929 930 931 932 933 934
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
935
		tim = ktime_add_safe(tim, base->resolution);
936 937
#endif
	}
938

939
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
940

941 942
	timer_stats_hrtimer_set_start_info(timer);

943 944 945 946 947 948
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
949 950 951 952 953

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
954 955 956
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
957
 * hrtimer_start - (re)start an hrtimer on the current CPU
958 959 960 961 962 963 964 965 966 967 968 969 970
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
	return hrtimer_start_range_ns(timer, tim, 0, mode);
}
971
EXPORT_SYMBOL_GPL(hrtimer_start);
972

973

974 975 976 977 978 979 980 981
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
982
 *    cannot be stopped
983 984 985
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
986
	struct hrtimer_clock_base *base;
987 988 989 990 991
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

992
	if (!hrtimer_callback_running(timer))
993 994 995 996 997 998 999
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1000
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1017
		cpu_relax();
1018 1019
	}
}
1020
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1021 1022 1023 1024 1025 1026 1027

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1028
	struct hrtimer_clock_base *base;
1029 1030 1031 1032
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1033
	rem = hrtimer_expires_remaining(timer);
1034 1035 1036 1037
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1038
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1039

1040
#ifdef CONFIG_NO_HZ
1041 1042 1043 1044 1045 1046 1047 1048
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1049 1050
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1051 1052 1053 1054
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1055 1056
	spin_lock_irqsave(&cpu_base->lock, flags);

1057 1058 1059
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1060

1061 1062
			if (!base->first)
				continue;
1063

1064
			timer = rb_entry(base->first, struct hrtimer, node);
1065
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1066 1067 1068 1069
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1070
	}
1071 1072 1073

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1074 1075 1076 1077 1078 1079
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1080 1081
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1082
{
1083
	struct hrtimer_cpu_base *cpu_base;
1084

1085 1086
	memset(timer, 0, sizeof(struct hrtimer));

1087
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1088

1089
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1090 1091
		clock_id = CLOCK_MONOTONIC;

1092
	timer->base = &cpu_base->clock_base[clock_id];
1093
	INIT_LIST_HEAD(&timer->cb_entry);
1094
	hrtimer_init_timer_hres(timer);
1095 1096 1097 1098 1099 1100

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1101
}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1115
EXPORT_SYMBOL_GPL(hrtimer_init);
1116 1117 1118 1119 1120 1121

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1122 1123
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1124 1125 1126
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1127
	struct hrtimer_cpu_base *cpu_base;
1128

1129 1130
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1131 1132 1133

	return 0;
}
1134
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1135

1136 1137 1138 1139 1140 1141 1142
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1143 1144
	WARN_ON(!irqs_disabled());

1145
	debug_hrtimer_deactivate(timer);
1146 1147 1148
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1149 1150 1151 1152 1153 1154 1155 1156 1157

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	/*
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
	 * reprogramming of the event hardware. This happens at the end of this
	 * function anyway.
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
		enqueue_hrtimer(timer, base, 0);
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1182
	int i;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1222 1223
				ktime_t expires;

1224
				expires = ktime_sub(hrtimer_get_expires(timer),
1225 1226 1227 1228 1229 1230
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1231
			__run_hrtimer(timer);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1273
	unsigned long flags;
1274

1275
	local_irq_save(flags);
1276
	__hrtimer_peek_ahead_timers();
1277 1278 1279
	local_irq_restore(flags);
}

1280
#endif	/* CONFIG_HIGH_RES_TIMERS */
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1304 1305
}

1306
/*
1307
 * Called from hardirq context every jiffy
1308
 */
1309
void hrtimer_run_queues(void)
1310
{
1311
	struct rb_node *node;
1312 1313 1314
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1315

1316
	if (hrtimer_hres_active())
1317 1318
		return;

1319 1320
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1321

1322
		if (!base->first)
1323
			continue;
1324

1325
		if (gettime) {
1326 1327
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1328
		}
1329

1330
		spin_lock(&cpu_base->lock);
1331

1332 1333
		while ((node = base->first)) {
			struct hrtimer *timer;
1334

1335
			timer = rb_entry(node, struct hrtimer, node);
1336 1337
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1338 1339 1340 1341 1342 1343
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1344 1345
}

1346 1347 1348
/*
 * Sleep related functions:
 */
1349
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1362
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1363 1364 1365 1366 1367
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1368
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1369
{
1370
	hrtimer_init_sleeper(t, current);
1371

1372 1373
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1374
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1375 1376
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1377

1378 1379
		if (likely(t->task))
			schedule();
1380

1381
		hrtimer_cancel(&t->timer);
1382
		mode = HRTIMER_MODE_ABS;
1383 1384

	} while (t->task && !signal_pending(current));
1385

1386 1387
	__set_current_state(TASK_RUNNING);

1388
	return t->task == NULL;
1389 1390
}

1391 1392 1393 1394 1395
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1396
	rem = hrtimer_expires_remaining(timer);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1407
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1408
{
1409
	struct hrtimer_sleeper t;
1410
	struct timespec __user  *rmtp;
1411
	int ret = 0;
1412

1413 1414
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1415
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1416

1417
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1418
		goto out;
1419

1420
	rmtp = restart->nanosleep.rmtp;
1421
	if (rmtp) {
1422
		ret = update_rmtp(&t.timer, rmtp);
1423
		if (ret <= 0)
1424
			goto out;
1425
	}
1426 1427

	/* The other values in restart are already filled in */
1428 1429 1430 1431
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1432 1433
}

1434
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1435 1436 1437
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1438
	struct hrtimer_sleeper t;
1439
	int ret = 0;
1440 1441 1442 1443 1444
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1445

1446
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1447
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1448
	if (do_nanosleep(&t, mode))
1449
		goto out;
1450

1451
	/* Absolute timers do not update the rmtp value and restart: */
1452 1453 1454 1455
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1456

1457
	if (rmtp) {
1458
		ret = update_rmtp(&t.timer, rmtp);
1459
		if (ret <= 0)
1460
			goto out;
1461
	}
1462 1463

	restart = &current_thread_info()->restart_block;
1464
	restart->fn = hrtimer_nanosleep_restart;
1465 1466
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1467
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1468

1469 1470 1471 1472
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1473 1474
}

1475 1476 1477
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
1478
	struct timespec tu;
1479 1480 1481 1482 1483 1484 1485

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1486
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1487 1488
}

1489 1490 1491
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1492
static void __cpuinit init_hrtimers_cpu(int cpu)
1493
{
1494
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1495 1496
	int i;

1497 1498 1499 1500 1501
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1502
	hrtimer_init_hres(cpu_base);
1503 1504 1505 1506
}

#ifdef CONFIG_HOTPLUG_CPU

1507
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1508
				struct hrtimer_clock_base *new_base)
1509 1510 1511 1512 1513 1514
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1515
		BUG_ON(hrtimer_callback_running(timer));
1516
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1517 1518 1519 1520 1521 1522 1523

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1524
		timer->base = new_base;
1525
		/*
1526 1527 1528 1529 1530 1531 1532 1533
		 * Enqueue the timers on the new cpu, but do not reprogram 
		 * the timer as that would enable a deadlock between
		 * hrtimer_enqueue_reprogramm() running the timer and us still
		 * holding a nested base lock.
		 *
		 * Instead we tickle the hrtimer interrupt after the migration
		 * is done, which will run all expired timers and re-programm
		 * the timer device.
1534
		 */
1535
		enqueue_hrtimer(timer, new_base, 0);
1536

T
Thomas Gleixner 已提交
1537 1538
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1539 1540 1541
	}
}

1542
static int migrate_hrtimers(int scpu)
1543
{
1544
	struct hrtimer_cpu_base *old_base, *new_base;
1545
	int dcpu, i;
1546

1547 1548
	BUG_ON(cpu_online(scpu));
	old_base = &per_cpu(hrtimer_bases, scpu);
1549
	new_base = &get_cpu_var(hrtimer_bases);
1550

1551 1552 1553
	dcpu = smp_processor_id();

	tick_cancel_sched_timer(scpu);
1554 1555 1556 1557 1558
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1559
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1560

1561
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1562
		migrate_hrtimer_list(&old_base->clock_base[i],
1563
				     &new_base->clock_base[i]);
1564 1565
	}

1566
	spin_unlock(&old_base->lock);
1567
	spin_unlock_irq(&new_base->lock);
1568
	put_cpu_var(hrtimer_bases);
1569 1570 1571 1572 1573 1574 1575

	return dcpu;
}

static void tickle_timers(void *arg)
{
	hrtimer_peek_ahead_timers();
1576
}
1577

1578 1579
#endif /* CONFIG_HOTPLUG_CPU */

1580
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1581 1582
					unsigned long action, void *hcpu)
{
1583
	int scpu = (long)hcpu;
1584 1585 1586 1587

	switch (action) {

	case CPU_UP_PREPARE:
1588
	case CPU_UP_PREPARE_FROZEN:
1589
		init_hrtimers_cpu(scpu);
1590 1591 1592 1593
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1594
	case CPU_DEAD_FROZEN:
1595 1596 1597
	{
		int dcpu;

1598 1599 1600
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
		dcpu = migrate_hrtimers(scpu);
		smp_call_function_single(dcpu, tickle_timers, NULL, 0);
1601
		break;
1602
	}
1603 1604 1605 1606 1607 1608 1609 1610 1611
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1612
static struct notifier_block __cpuinitdata hrtimers_nb = {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1623
/**
1624
 * schedule_hrtimeout_range - sleep until timeout
1625
 * @expires:	timeout value (ktime_t)
1626
 * @delta:	slack in expires timeout (ktime_t)
1627 1628 1629 1630 1631 1632
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1633 1634 1635 1636 1637
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1651
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1675
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1676 1677 1678

	hrtimer_init_sleeper(&t, current);

1679
	hrtimer_start_expires(&t.timer, mode);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1722
EXPORT_SYMBOL_GPL(schedule_hrtimeout);