hrtimer.c 48.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57 58
/*
 * The timer bases:
59
 *
60 61 62 63
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
64
 */
65
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66
{
67

68
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69
	.clock_base =
70
	{
71
		{
72 73
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
74
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76
		},
T
Thomas Gleixner 已提交
77 78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87 88
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
89 90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
102
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
103
};
104 105 106 107 108 109 110

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


111 112 113 114
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
115
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116
{
117 118
	ktime_t xtim, mono, boot, tai;
	ktime_t off_real, off_boot, off_tai;
119

120 121 122 123
	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
	boot = ktime_add(mono, off_boot);
	xtim = ktime_add(mono, off_real);
	tai = ktime_add(xtim, off_tai);
124

125
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
126 127
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
128
	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
149 150 151
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
152
{
153
	struct hrtimer_clock_base *base;
154 155 156 157

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
158
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
159 160 161
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
162
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
163 164 165 166 167
		}
		cpu_relax();
	}
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

191 192 193
/*
 * Switch the timer base to the current CPU when possible.
 */
194
static inline struct hrtimer_clock_base *
195 196
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
197
{
198 199
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
200
	int this_cpu = smp_processor_id();
201
	int cpu = get_nohz_timer_target(pinned);
202
	int basenum = base->index;
203

204 205
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206
	new_base = &new_cpu_base->clock_base[basenum];
207 208 209

	if (base != new_base) {
		/*
210
		 * We are trying to move timer to new_base.
211 212 213 214 215 216 217
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
218
		if (unlikely(hrtimer_callback_running(timer)))
219 220 221 222
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
223 224
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
225

226 227
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
228 229
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
230 231
			timer->base = base;
			goto again;
232
		}
233
		timer->base = new_base;
234 235 236 237 238
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
239 240 241 242 243 244
	}
	return new_base;
}

#else /* CONFIG_SMP */

245
static inline struct hrtimer_clock_base *
246 247
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
248
	struct hrtimer_clock_base *base = timer->base;
249

250
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
251 252 253 254

	return base;
}

255
# define switch_hrtimer_base(t, b, p)	(b)
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

281 282 283 284
		/* Make sure nsec fits into long */
		if (unlikely(nsec > KTIME_SEC_MAX))
			return (ktime_t){ .tv64 = KTIME_MAX };

285 286 287 288 289
		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
290 291

EXPORT_SYMBOL_GPL(ktime_add_ns);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
316 317 318 319 320
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
321
u64 ktime_divns(const ktime_t kt, s64 div)
322
{
323
	u64 dclc;
324 325
	int sft = 0;

326
	dclc = ktime_to_ns(kt);
327 328 329 330 331 332 333 334
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
335
	return dclc;
336 337 338
}
#endif /* BITS_PER_LONG >= 64 */

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

356 357
EXPORT_SYMBOL_GPL(ktime_add_safe);

358 359 360 361
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

362 363 364 365 366
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
426
	.debug_hint	= hrtimer_debug_hint,
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
461
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
462 463 464 465 466 467 468 469 470 471 472 473

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
531
	return __this_cpu_read(hrtimer_bases.hres_active);
532 533 534 535 536 537 538
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
539 540
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
541 542 543
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
544
	ktime_t expires, expires_next;
545

546
	expires_next.tv64 = KTIME_MAX;
547 548 549

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
550
		struct timerqueue_node *next;
551

552 553
		next = timerqueue_getnext(&base->active);
		if (!next)
554
			continue;
555 556
		timer = container_of(next, struct hrtimer, node);

557
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 559 560 561 562 563 564
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
565 566
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
567 568
	}

569 570 571 572 573
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

591 592 593 594 595 596 597 598 599 600 601
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
602 603 604 605 606
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
607 608 609 610 611
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
612
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
613
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
614 615
	int res;

616
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
617

618 619 620
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
621
	 * the callback is executed in the hrtimer_interrupt context. The
622 623 624 625 626 627
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

628 629 630 631 632 633 634 635 636
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

637 638 639 640 641 642 643 644 645 646
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
647 648 649 650 651 652 653
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
654
		cpu_base->expires_next = expires;
655 656 657 658 659 660 661 662 663 664 665 666
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

667 668 669 670
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
671
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
672

673
	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
689
	hrtimer_update_base(base);
690 691 692
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
693

694 695 696
/*
 * Switch to high resolution mode
 */
697
static int hrtimer_switch_to_hres(void)
698
{
699
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
700
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
701 702 703
	unsigned long flags;

	if (base->hres_active)
704
		return 1;
705 706 707 708 709

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
710 711
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
712
		return 0;
713 714
	}
	base->hres_active = 1;
715 716
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
717 718 719 720 721

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
722
	return 1;
723 724
}

725 726 727 728 729 730 731
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

732
/*
733 734
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
735 736 737
 */
void clock_was_set_delayed(void)
{
738
	schedule_work(&hrtimer_work);
739 740
}

741 742 743 744
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
745
static inline int hrtimer_switch_to_hres(void) { return 0; }
746 747
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
748 749
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
750 751 752 753
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
754
static inline void retrigger_next_event(void *arg) { }
755 756 757

#endif /* CONFIG_HIGH_RES_TIMERS */

758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
771
#ifdef CONFIG_HIGH_RES_TIMERS
772 773
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
774 775
#endif
	timerfd_clock_was_set();
776 777 778 779
}

/*
 * During resume we might have to reprogram the high resolution timer
780 781
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
782
 * must be deferred.
783 784 785 786 787 788
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

789
	/* Retrigger on the local CPU */
790
	retrigger_next_event(NULL);
791 792
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
793 794
}

795
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
796
{
797
#ifdef CONFIG_TIMER_STATS
798 799
	if (timer->start_site)
		return;
800
	timer->start_site = __builtin_return_address(0);
801 802
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
803 804 805 806 807 808 809 810
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
811
}
812 813 814 815 816 817 818 819

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
820
#endif
821
}
822

823
/*
824
 * Counterpart to lock_hrtimer_base above:
825 826 827 828
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
829
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
830 831 832 833 834
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
835
 * @now:	forward past this time
836 837 838
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
839
 * Returns the number of overruns.
840
 */
D
Davide Libenzi 已提交
841
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
842
{
D
Davide Libenzi 已提交
843
	u64 orun = 1;
844
	ktime_t delta;
845

846
	delta = ktime_sub(now, hrtimer_get_expires(timer));
847 848 849 850

	if (delta.tv64 < 0)
		return 0;

851 852 853
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

854
	if (unlikely(delta.tv64 >= interval.tv64)) {
855
		s64 incr = ktime_to_ns(interval);
856 857

		orun = ktime_divns(delta, incr);
858 859
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
860 861 862 863 864 865 866
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
867
	hrtimer_add_expires(timer, interval);
868 869 870

	return orun;
}
S
Stas Sergeev 已提交
871
EXPORT_SYMBOL_GPL(hrtimer_forward);
872 873 874 875 876 877

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
878 879
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
880
 */
881 882
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
883
{
884
	debug_activate(timer);
885

886
	timerqueue_add(&base->active, &timer->node);
887
	base->cpu_base->active_bases |= 1 << base->index;
888

889 890 891 892 893
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
894

895
	return (&timer->node == base->active.next);
896
}
897 898 899 900 901

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
902 903 904 905 906
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
907
 */
908
static void __remove_hrtimer(struct hrtimer *timer,
909
			     struct hrtimer_clock_base *base,
910
			     unsigned long newstate, int reprogram)
911
{
912
	struct timerqueue_node *next_timer;
913 914 915
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

916 917 918
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
919 920 921 922 923 924 925 926 927
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
928
		}
929
#endif
930
	}
931 932
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
933
out:
934
	timer->state = newstate;
935 936 937 938 939 940
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
941
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
942
{
943
	if (hrtimer_is_queued(timer)) {
944
		unsigned long state;
945 946 947 948 949 950 951 952 953 954
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
955
		debug_deactivate(timer);
956
		timer_stats_hrtimer_clear_start_info(timer);
957
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
958 959 960 961 962 963 964
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
965 966 967 968 969
		return 1;
	}
	return 0;
}

970 971 972
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
973
{
974
	struct hrtimer_clock_base *base, *new_base;
975
	unsigned long flags;
976
	int ret, leftmost;
977 978 979 980 981 982

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

983
	if (mode & HRTIMER_MODE_REL) {
984
		tim = ktime_add_safe(tim, base->get_time());
985 986 987 988 989 990 991 992
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
993
		tim = ktime_add_safe(tim, base->resolution);
994 995
#endif
	}
996

997
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
998

999 1000 1001
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1002 1003
	timer_stats_hrtimer_set_start_info(timer);

1004 1005
	leftmost = enqueue_hrtimer(timer, new_base);

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
	} else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
1018
			hrtimer_reprogram(timer, new_base)) {
1019 1020 1021 1022 1023 1024
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1038 1039 1040 1041 1042

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1043
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1044 1045 1046 1047 1048 1049

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1050 1051
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1062 1063 1064
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1065
 * hrtimer_start - (re)start an hrtimer on the current CPU
1066 1067
 * @timer:	the timer to be added
 * @tim:	expiry time
1068 1069
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1070 1071 1072 1073 1074 1075 1076 1077
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1078
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1079
}
1080
EXPORT_SYMBOL_GPL(hrtimer_start);
1081

1082

1083 1084 1085 1086 1087 1088 1089 1090
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1091
 *    cannot be stopped
1092 1093 1094
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1095
	struct hrtimer_clock_base *base;
1096 1097 1098 1099 1100
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1101
	if (!hrtimer_callback_running(timer))
1102 1103 1104 1105 1106 1107 1108
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1109
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1126
		cpu_relax();
1127 1128
	}
}
1129
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1140
	lock_hrtimer_base(timer, &flags);
1141
	rem = hrtimer_expires_remaining(timer);
1142 1143 1144 1145
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1146
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1147

1148
#ifdef CONFIG_NO_HZ_COMMON
1149 1150 1151 1152 1153 1154 1155 1156
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1157 1158
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1159 1160 1161 1162
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1163
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1164

1165 1166 1167
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1168
			struct timerqueue_node *next;
1169

1170 1171
			next = timerqueue_getnext(&base->active);
			if (!next)
1172
				continue;
1173

1174
			timer = container_of(next, struct hrtimer, node);
1175
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1176 1177 1178 1179
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1180
	}
1181

1182
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1183

1184 1185 1186 1187 1188 1189
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1190 1191
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1192
{
1193
	struct hrtimer_cpu_base *cpu_base;
1194
	int base;
1195

1196 1197
	memset(timer, 0, sizeof(struct hrtimer));

1198
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1199

1200
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1201 1202
		clock_id = CLOCK_MONOTONIC;

1203 1204
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1205
	timerqueue_init(&timer->node);
1206 1207 1208 1209 1210 1211

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1212
}
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1223
	debug_init(timer, clock_id, mode);
1224 1225
	__hrtimer_init(timer, clock_id, mode);
}
1226
EXPORT_SYMBOL_GPL(hrtimer_init);
1227 1228 1229 1230 1231 1232

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1233 1234
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1235 1236 1237
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1238
	struct hrtimer_cpu_base *cpu_base;
1239
	int base = hrtimer_clockid_to_base(which_clock);
1240

1241
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1242
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1243 1244 1245

	return 0;
}
1246
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1247

1248
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1249 1250 1251 1252 1253 1254
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1255 1256
	WARN_ON(!irqs_disabled());

1257
	debug_deactivate(timer);
1258 1259 1260
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1261 1262 1263 1264 1265 1266

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1267
	raw_spin_unlock(&cpu_base->lock);
1268
	trace_hrtimer_expire_entry(timer, now);
1269
	restart = fn(timer);
1270
	trace_hrtimer_expire_exit(timer);
1271
	raw_spin_lock(&cpu_base->lock);
1272 1273

	/*
T
Thomas Gleixner 已提交
1274 1275 1276
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1277 1278 1279
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1280
		enqueue_hrtimer(timer, base);
1281
	}
1282 1283 1284

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1285 1286 1287
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1288 1289 1290 1291 1292 1293 1294 1295 1296
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1297 1298
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1299 1300 1301 1302 1303

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1304
	raw_spin_lock(&cpu_base->lock);
1305
	entry_time = now = hrtimer_update_base(cpu_base);
1306
retry:
1307
	expires_next.tv64 = KTIME_MAX;
1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1317
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1318
		struct hrtimer_clock_base *base;
1319
		struct timerqueue_node *node;
1320 1321 1322 1323
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1324

1325
		base = cpu_base->clock_base + i;
1326 1327
		basenow = ktime_add(now, base->offset);

1328
		while ((node = timerqueue_getnext(&base->active))) {
1329 1330
			struct hrtimer *timer;

1331
			timer = container_of(node, struct hrtimer, node);
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1347 1348
				ktime_t expires;

1349
				expires = ktime_sub(hrtimer_get_expires(timer),
1350
						    base->offset);
1351 1352
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
1353 1354 1355 1356 1357
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1358
			__run_hrtimer(timer, &basenow);
1359 1360 1361
		}
	}

1362 1363 1364 1365
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1366
	cpu_base->expires_next = expires_next;
1367
	raw_spin_unlock(&cpu_base->lock);
1368 1369

	/* Reprogramming necessary ? */
1370 1371 1372 1373
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1374
	}
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1385 1386 1387
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1388
	 */
1389
	raw_spin_lock(&cpu_base->lock);
1390
	now = hrtimer_update_base(cpu_base);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1402
	raw_spin_unlock(&cpu_base->lock);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1446
	unsigned long flags;
1447

1448
	local_irq_save(flags);
1449
	__hrtimer_peek_ahead_timers();
1450 1451 1452
	local_irq_restore(flags);
}

1453 1454 1455 1456 1457
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1458 1459 1460 1461 1462
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1486 1487
}

1488
/*
1489
 * Called from hardirq context every jiffy
1490
 */
1491
void hrtimer_run_queues(void)
1492
{
1493
	struct timerqueue_node *node;
1494 1495 1496
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1497

1498
	if (hrtimer_hres_active())
1499 1500
		return;

1501 1502
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1503
		if (!timerqueue_getnext(&base->active))
1504
			continue;
1505

1506
		if (gettime) {
1507 1508
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1509
		}
1510

1511
		raw_spin_lock(&cpu_base->lock);
1512

1513
		while ((node = timerqueue_getnext(&base->active))) {
1514
			struct hrtimer *timer;
1515

1516
			timer = container_of(node, struct hrtimer, node);
1517 1518
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1519 1520
				break;

1521
			__run_hrtimer(timer, &base->softirq_time);
1522
		}
1523
		raw_spin_unlock(&cpu_base->lock);
1524
	}
1525 1526
}

1527 1528 1529
/*
 * Sleep related functions:
 */
1530
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1543
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1544 1545 1546 1547
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1548
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1549

1550
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1551
{
1552
	hrtimer_init_sleeper(t, current);
1553

1554 1555
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1556
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1557 1558
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1559

1560
		if (likely(t->task))
1561
			freezable_schedule();
1562

1563
		hrtimer_cancel(&t->timer);
1564
		mode = HRTIMER_MODE_ABS;
1565 1566

	} while (t->task && !signal_pending(current));
1567

1568 1569
	__set_current_state(TASK_RUNNING);

1570
	return t->task == NULL;
1571 1572
}

1573 1574 1575 1576 1577
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1578
	rem = hrtimer_expires_remaining(timer);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1589
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1590
{
1591
	struct hrtimer_sleeper t;
1592
	struct timespec __user  *rmtp;
1593
	int ret = 0;
1594

1595
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1596
				HRTIMER_MODE_ABS);
1597
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1598

1599
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1600
		goto out;
1601

1602
	rmtp = restart->nanosleep.rmtp;
1603
	if (rmtp) {
1604
		ret = update_rmtp(&t.timer, rmtp);
1605
		if (ret <= 0)
1606
			goto out;
1607
	}
1608 1609

	/* The other values in restart are already filled in */
1610 1611 1612 1613
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1614 1615
}

1616
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1617 1618 1619
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1620
	struct hrtimer_sleeper t;
1621
	int ret = 0;
1622 1623 1624
	unsigned long slack;

	slack = current->timer_slack_ns;
1625
	if (dl_task(current) || rt_task(current))
1626
		slack = 0;
1627

1628
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1629
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1630
	if (do_nanosleep(&t, mode))
1631
		goto out;
1632

1633
	/* Absolute timers do not update the rmtp value and restart: */
1634 1635 1636 1637
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1638

1639
	if (rmtp) {
1640
		ret = update_rmtp(&t.timer, rmtp);
1641
		if (ret <= 0)
1642
			goto out;
1643
	}
1644 1645

	restart = &current_thread_info()->restart_block;
1646
	restart->fn = hrtimer_nanosleep_restart;
1647
	restart->nanosleep.clockid = t.timer.base->clockid;
1648
	restart->nanosleep.rmtp = rmtp;
1649
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1650

1651 1652 1653 1654
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1655 1656
}

1657 1658
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1659
{
1660
	struct timespec tu;
1661 1662 1663 1664 1665 1666 1667

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1668
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1669 1670
}

1671 1672 1673
/*
 * Functions related to boot-time initialization:
 */
1674
static void init_hrtimers_cpu(int cpu)
1675
{
1676
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1677 1678
	int i;

1679
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1680
		cpu_base->clock_base[i].cpu_base = cpu_base;
1681 1682
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1683

1684
	cpu_base->cpu = cpu;
1685
	hrtimer_init_hres(cpu_base);
1686 1687 1688 1689
}

#ifdef CONFIG_HOTPLUG_CPU

1690
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1691
				struct hrtimer_clock_base *new_base)
1692 1693
{
	struct hrtimer *timer;
1694
	struct timerqueue_node *node;
1695

1696 1697
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1698
		BUG_ON(hrtimer_callback_running(timer));
1699
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1700 1701 1702 1703 1704 1705 1706

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1707
		timer->base = new_base;
1708
		/*
T
Thomas Gleixner 已提交
1709 1710 1711 1712 1713 1714
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1715
		 */
1716
		enqueue_hrtimer(timer, new_base);
1717

T
Thomas Gleixner 已提交
1718 1719
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1720 1721 1722
	}
}

1723
static void migrate_hrtimers(int scpu)
1724
{
1725
	struct hrtimer_cpu_base *old_base, *new_base;
1726
	int i;
1727

1728 1729
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1730 1731 1732 1733

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1734 1735 1736 1737
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1738 1739
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1740

1741
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1742
		migrate_hrtimer_list(&old_base->clock_base[i],
1743
				     &new_base->clock_base[i]);
1744 1745
	}

1746 1747
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1748

1749 1750 1751
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1752
}
1753

1754 1755
#endif /* CONFIG_HOTPLUG_CPU */

1756
static int hrtimer_cpu_notify(struct notifier_block *self,
1757 1758
					unsigned long action, void *hcpu)
{
1759
	int scpu = (long)hcpu;
1760 1761 1762 1763

	switch (action) {

	case CPU_UP_PREPARE:
1764
	case CPU_UP_PREPARE_FROZEN:
1765
		init_hrtimers_cpu(scpu);
1766 1767 1768
		break;

#ifdef CONFIG_HOTPLUG_CPU
1769 1770 1771 1772
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1773
	case CPU_DEAD:
1774
	case CPU_DEAD_FROZEN:
1775
	{
1776
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1777
		migrate_hrtimers(scpu);
1778
		break;
1779
	}
1780 1781 1782 1783 1784 1785 1786 1787 1788
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1789
static struct notifier_block hrtimers_nb = {
1790 1791 1792 1793 1794 1795 1796 1797
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1798 1799 1800
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1801 1802
}

1803
/**
1804
 * schedule_hrtimeout_range_clock - sleep until timeout
1805
 * @expires:	timeout value (ktime_t)
1806
 * @delta:	slack in expires timeout (ktime_t)
1807
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1808
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1809
 */
1810 1811 1812
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1826
	 * A NULL parameter means "infinite"
1827 1828 1829 1830 1831 1832 1833
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1834
	hrtimer_init_on_stack(&t.timer, clock, mode);
1835
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1836 1837 1838

	hrtimer_init_sleeper(&t, current);

1839
	hrtimer_start_expires(&t.timer, mode);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1917
EXPORT_SYMBOL_GPL(schedule_hrtimeout);