hrtimer.c 48.3 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57 58
/*
 * The timer bases:
59
 *
60 61 62 63
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
64
 */
65
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66
{
67

68
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69
	.clock_base =
70
	{
71
		{
72 73
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
74
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76
		},
T
Thomas Gleixner 已提交
77 78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87 88
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
89 90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
102
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
103
};
104 105 106 107 108 109 110

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


111 112 113 114
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
115
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116
{
117
	ktime_t xtim, mono, boot;
118
	struct timespec xts, tom, slp;
119
	s32 tai_offset;
120

121
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122
	tai_offset = timekeeping_get_tai_offset();
123

J
john stultz 已提交
124
	xtim = timespec_to_ktime(xts);
125 126
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
127
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 129
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 131
	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
				ktime_add(xtim,	ktime_set(tai_offset, 0));
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
152 153 154
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
155
{
156
	struct hrtimer_clock_base *base;
157 158 159 160

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
161
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 163 164
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
165
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 167 168 169 170
		}
		cpu_relax();
	}
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

194 195 196
/*
 * Switch the timer base to the current CPU when possible.
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201 202
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
203
	int this_cpu = smp_processor_id();
204
	int cpu = get_nohz_timer_target(pinned);
205
	int basenum = base->index;
206

207 208
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209
	new_base = &new_cpu_base->clock_base[basenum];
210 211 212

	if (base != new_base) {
		/*
213
		 * We are trying to move timer to new_base.
214 215 216 217 218 219 220
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
221
		if (unlikely(hrtimer_callback_running(timer)))
222 223 224 225
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
226 227
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
228

229 230
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
231 232
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237 238 239 240 241
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
242 243 244 245 246 247
	}
	return new_base;
}

#else /* CONFIG_SMP */

248
static inline struct hrtimer_clock_base *
249 250
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
251
	struct hrtimer_clock_base *base = timer->base;
252

253
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
254 255 256 257

	return base;
}

258
# define switch_hrtimer_base(t, b, p)	(b)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

284 285 286 287
		/* Make sure nsec fits into long */
		if (unlikely(nsec > KTIME_SEC_MAX))
			return (ktime_t){ .tv64 = KTIME_MAX };

288 289 290 291 292
		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
293 294

EXPORT_SYMBOL_GPL(ktime_add_ns);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
319 320 321 322 323
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
324
u64 ktime_divns(const ktime_t kt, s64 div)
325
{
326
	u64 dclc;
327 328
	int sft = 0;

329
	dclc = ktime_to_ns(kt);
330 331 332 333 334 335 336 337
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
338
	return dclc;
339 340 341
}
#endif /* BITS_PER_LONG >= 64 */

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

359 360
EXPORT_SYMBOL_GPL(ktime_add_safe);

361 362 363 364
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

365 366 367 368 369
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
429
	.debug_hint	= hrtimer_debug_hint,
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
464
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
465 466 467 468 469 470 471 472 473 474 475 476

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
534
	return __this_cpu_read(hrtimer_bases.hres_active);
535 536 537 538 539 540 541
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
542 543
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
544 545 546
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
547
	ktime_t expires, expires_next;
548

549
	expires_next.tv64 = KTIME_MAX;
550 551 552

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
553
		struct timerqueue_node *next;
554

555 556
		next = timerqueue_getnext(&base->active);
		if (!next)
557
			continue;
558 559
		timer = container_of(next, struct hrtimer, node);

560
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
561 562 563 564 565 566 567
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
568 569
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
570 571
	}

572 573 574 575 576
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

594 595 596 597 598 599 600 601 602 603 604
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
605 606 607 608 609
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
610 611 612 613 614
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
615
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
616
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
617 618
	int res;

619
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
620

621 622 623
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
624
	 * the callback is executed in the hrtimer_interrupt context. The
625 626 627 628 629 630
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

631 632 633 634 635 636 637 638 639
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

640 641 642 643 644 645 646 647 648 649
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
650 651 652 653 654 655 656
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
657
		cpu_base->expires_next = expires;
658 659 660 661 662 663 664 665 666 667 668 669
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

670 671 672 673
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
674
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
675

676
	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
692
	hrtimer_update_base(base);
693 694 695
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
696

697 698 699
/*
 * Switch to high resolution mode
 */
700
static int hrtimer_switch_to_hres(void)
701
{
702
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
703
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
704 705 706
	unsigned long flags;

	if (base->hres_active)
707
		return 1;
708 709 710 711 712

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
713 714
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
715
		return 0;
716 717
	}
	base->hres_active = 1;
718 719
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
720 721 722 723 724

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
725
	return 1;
726 727
}

728 729 730 731 732 733 734
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

735
/*
736 737
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
738 739 740
 */
void clock_was_set_delayed(void)
{
741
	schedule_work(&hrtimer_work);
742 743
}

744 745 746 747
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
748
static inline int hrtimer_switch_to_hres(void) { return 0; }
749 750
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
751 752
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
753 754 755 756
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
757
static inline void retrigger_next_event(void *arg) { }
758 759 760

#endif /* CONFIG_HIGH_RES_TIMERS */

761 762 763 764 765 766 767 768 769 770 771 772 773
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
774
#ifdef CONFIG_HIGH_RES_TIMERS
775 776
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
777 778
#endif
	timerfd_clock_was_set();
779 780 781 782
}

/*
 * During resume we might have to reprogram the high resolution timer
783 784
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
785
 * must be deferred.
786 787 788 789 790 791
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

792
	/* Retrigger on the local CPU */
793
	retrigger_next_event(NULL);
794 795
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
796 797
}

798
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
799
{
800
#ifdef CONFIG_TIMER_STATS
801 802
	if (timer->start_site)
		return;
803
	timer->start_site = __builtin_return_address(0);
804 805
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
806 807 808 809 810 811 812 813
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
814
}
815 816 817 818 819 820 821 822

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
823
#endif
824
}
825

826
/*
827
 * Counterpart to lock_hrtimer_base above:
828 829 830 831
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
832
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
833 834 835 836 837
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
838
 * @now:	forward past this time
839 840 841
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
842
 * Returns the number of overruns.
843
 */
D
Davide Libenzi 已提交
844
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
845
{
D
Davide Libenzi 已提交
846
	u64 orun = 1;
847
	ktime_t delta;
848

849
	delta = ktime_sub(now, hrtimer_get_expires(timer));
850 851 852 853

	if (delta.tv64 < 0)
		return 0;

854 855 856
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

857
	if (unlikely(delta.tv64 >= interval.tv64)) {
858
		s64 incr = ktime_to_ns(interval);
859 860

		orun = ktime_divns(delta, incr);
861 862
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
863 864 865 866 867 868 869
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
870
	hrtimer_add_expires(timer, interval);
871 872 873

	return orun;
}
S
Stas Sergeev 已提交
874
EXPORT_SYMBOL_GPL(hrtimer_forward);
875 876 877 878 879 880

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
881 882
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
883
 */
884 885
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
886
{
887
	debug_activate(timer);
888

889
	timerqueue_add(&base->active, &timer->node);
890
	base->cpu_base->active_bases |= 1 << base->index;
891

892 893 894 895 896
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
897

898
	return (&timer->node == base->active.next);
899
}
900 901 902 903 904

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
905 906 907 908 909
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
910
 */
911
static void __remove_hrtimer(struct hrtimer *timer,
912
			     struct hrtimer_clock_base *base,
913
			     unsigned long newstate, int reprogram)
914
{
915
	struct timerqueue_node *next_timer;
916 917 918
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

919 920 921
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
922 923 924 925 926 927 928 929 930
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
931
		}
932
#endif
933
	}
934 935
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
936
out:
937
	timer->state = newstate;
938 939 940 941 942 943
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
944
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
945
{
946
	if (hrtimer_is_queued(timer)) {
947
		unsigned long state;
948 949 950 951 952 953 954 955 956 957
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
958
		debug_deactivate(timer);
959
		timer_stats_hrtimer_clear_start_info(timer);
960
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
961 962 963 964 965 966 967
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
968 969 970 971 972
		return 1;
	}
	return 0;
}

973 974 975
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
976
{
977
	struct hrtimer_clock_base *base, *new_base;
978
	unsigned long flags;
979
	int ret, leftmost;
980 981 982 983 984 985

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

986
	if (mode & HRTIMER_MODE_REL) {
987
		tim = ktime_add_safe(tim, base->get_time());
988 989 990 991 992 993 994 995
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
996
		tim = ktime_add_safe(tim, base->resolution);
997 998
#endif
	}
999

1000
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1001

1002 1003 1004
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1005 1006
	timer_stats_hrtimer_set_start_info(timer);

1007 1008
	leftmost = enqueue_hrtimer(timer, new_base);

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
	} else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
1021
			hrtimer_reprogram(timer, new_base)) {
1022 1023 1024 1025 1026 1027
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1041 1042 1043 1044 1045

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1046
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1047 1048 1049 1050 1051 1052

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1053 1054
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1065 1066 1067
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1068
 * hrtimer_start - (re)start an hrtimer on the current CPU
1069 1070
 * @timer:	the timer to be added
 * @tim:	expiry time
1071 1072
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1073 1074 1075 1076 1077 1078 1079 1080
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1081
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1082
}
1083
EXPORT_SYMBOL_GPL(hrtimer_start);
1084

1085

1086 1087 1088 1089 1090 1091 1092 1093
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1094
 *    cannot be stopped
1095 1096 1097
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1098
	struct hrtimer_clock_base *base;
1099 1100 1101 1102 1103
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1104
	if (!hrtimer_callback_running(timer))
1105 1106 1107 1108 1109 1110 1111
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1112
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1129
		cpu_relax();
1130 1131
	}
}
1132
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1143
	lock_hrtimer_base(timer, &flags);
1144
	rem = hrtimer_expires_remaining(timer);
1145 1146 1147 1148
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1149
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1150

1151
#ifdef CONFIG_NO_HZ_COMMON
1152 1153 1154 1155 1156 1157 1158 1159
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1160 1161
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1162 1163 1164 1165
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1166
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1167

1168 1169 1170
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1171
			struct timerqueue_node *next;
1172

1173 1174
			next = timerqueue_getnext(&base->active);
			if (!next)
1175
				continue;
1176

1177
			timer = container_of(next, struct hrtimer, node);
1178
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1179 1180 1181 1182
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1183
	}
1184

1185
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1186

1187 1188 1189 1190 1191 1192
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1193 1194
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1195
{
1196
	struct hrtimer_cpu_base *cpu_base;
1197
	int base;
1198

1199 1200
	memset(timer, 0, sizeof(struct hrtimer));

1201
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1202

1203
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1204 1205
		clock_id = CLOCK_MONOTONIC;

1206 1207
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1208
	timerqueue_init(&timer->node);
1209 1210 1211 1212 1213 1214

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1215
}
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1226
	debug_init(timer, clock_id, mode);
1227 1228
	__hrtimer_init(timer, clock_id, mode);
}
1229
EXPORT_SYMBOL_GPL(hrtimer_init);
1230 1231 1232 1233 1234 1235

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1236 1237
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1238 1239 1240
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1241
	struct hrtimer_cpu_base *cpu_base;
1242
	int base = hrtimer_clockid_to_base(which_clock);
1243

1244
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1245
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1246 1247 1248

	return 0;
}
1249
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1250

1251
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1252 1253 1254 1255 1256 1257
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1258 1259
	WARN_ON(!irqs_disabled());

1260
	debug_deactivate(timer);
1261 1262 1263
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1264 1265 1266 1267 1268 1269

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1270
	raw_spin_unlock(&cpu_base->lock);
1271
	trace_hrtimer_expire_entry(timer, now);
1272
	restart = fn(timer);
1273
	trace_hrtimer_expire_exit(timer);
1274
	raw_spin_lock(&cpu_base->lock);
1275 1276

	/*
T
Thomas Gleixner 已提交
1277 1278 1279
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1280 1281 1282
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1283
		enqueue_hrtimer(timer, base);
1284
	}
1285 1286 1287

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1288 1289 1290
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1300 1301
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1302 1303 1304 1305 1306

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1307
	raw_spin_lock(&cpu_base->lock);
1308
	entry_time = now = hrtimer_update_base(cpu_base);
1309
retry:
1310
	expires_next.tv64 = KTIME_MAX;
1311 1312 1313 1314 1315 1316 1317 1318 1319
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1320
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1321
		struct hrtimer_clock_base *base;
1322
		struct timerqueue_node *node;
1323 1324 1325 1326
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1327

1328
		base = cpu_base->clock_base + i;
1329 1330
		basenow = ktime_add(now, base->offset);

1331
		while ((node = timerqueue_getnext(&base->active))) {
1332 1333
			struct hrtimer *timer;

1334
			timer = container_of(node, struct hrtimer, node);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1350 1351
				ktime_t expires;

1352
				expires = ktime_sub(hrtimer_get_expires(timer),
1353
						    base->offset);
1354 1355
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
1356 1357 1358 1359 1360
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1361
			__run_hrtimer(timer, &basenow);
1362 1363 1364
		}
	}

1365 1366 1367 1368
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1369
	cpu_base->expires_next = expires_next;
1370
	raw_spin_unlock(&cpu_base->lock);
1371 1372

	/* Reprogramming necessary ? */
1373 1374 1375 1376
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1377
	}
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1388 1389 1390
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1391
	 */
1392
	raw_spin_lock(&cpu_base->lock);
1393
	now = hrtimer_update_base(cpu_base);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1405
	raw_spin_unlock(&cpu_base->lock);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1420 1421
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1449
	unsigned long flags;
1450

1451
	local_irq_save(flags);
1452
	__hrtimer_peek_ahead_timers();
1453 1454 1455
	local_irq_restore(flags);
}

1456 1457 1458 1459 1460
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1461 1462 1463 1464 1465
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1489 1490
}

1491
/*
1492
 * Called from hardirq context every jiffy
1493
 */
1494
void hrtimer_run_queues(void)
1495
{
1496
	struct timerqueue_node *node;
1497 1498 1499
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1500

1501
	if (hrtimer_hres_active())
1502 1503
		return;

1504 1505
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1506
		if (!timerqueue_getnext(&base->active))
1507
			continue;
1508

1509
		if (gettime) {
1510 1511
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1512
		}
1513

1514
		raw_spin_lock(&cpu_base->lock);
1515

1516
		while ((node = timerqueue_getnext(&base->active))) {
1517
			struct hrtimer *timer;
1518

1519
			timer = container_of(node, struct hrtimer, node);
1520 1521
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1522 1523
				break;

1524
			__run_hrtimer(timer, &base->softirq_time);
1525
		}
1526
		raw_spin_unlock(&cpu_base->lock);
1527
	}
1528 1529
}

1530 1531 1532
/*
 * Sleep related functions:
 */
1533
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1546
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1547 1548 1549 1550
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1551
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1552

1553
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1554
{
1555
	hrtimer_init_sleeper(t, current);
1556

1557 1558
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1559
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1560 1561
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1562

1563
		if (likely(t->task))
1564
			freezable_schedule();
1565

1566
		hrtimer_cancel(&t->timer);
1567
		mode = HRTIMER_MODE_ABS;
1568 1569

	} while (t->task && !signal_pending(current));
1570

1571 1572
	__set_current_state(TASK_RUNNING);

1573
	return t->task == NULL;
1574 1575
}

1576 1577 1578 1579 1580
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1581
	rem = hrtimer_expires_remaining(timer);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1592
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1593
{
1594
	struct hrtimer_sleeper t;
1595
	struct timespec __user  *rmtp;
1596
	int ret = 0;
1597

1598
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1599
				HRTIMER_MODE_ABS);
1600
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1601

1602
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1603
		goto out;
1604

1605
	rmtp = restart->nanosleep.rmtp;
1606
	if (rmtp) {
1607
		ret = update_rmtp(&t.timer, rmtp);
1608
		if (ret <= 0)
1609
			goto out;
1610
	}
1611 1612

	/* The other values in restart are already filled in */
1613 1614 1615 1616
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1617 1618
}

1619
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1620 1621 1622
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1623
	struct hrtimer_sleeper t;
1624
	int ret = 0;
1625 1626 1627
	unsigned long slack;

	slack = current->timer_slack_ns;
1628
	if (dl_task(current) || rt_task(current))
1629
		slack = 0;
1630

1631
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1632
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1633
	if (do_nanosleep(&t, mode))
1634
		goto out;
1635

1636
	/* Absolute timers do not update the rmtp value and restart: */
1637 1638 1639 1640
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1641

1642
	if (rmtp) {
1643
		ret = update_rmtp(&t.timer, rmtp);
1644
		if (ret <= 0)
1645
			goto out;
1646
	}
1647 1648

	restart = &current_thread_info()->restart_block;
1649
	restart->fn = hrtimer_nanosleep_restart;
1650
	restart->nanosleep.clockid = t.timer.base->clockid;
1651
	restart->nanosleep.rmtp = rmtp;
1652
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1653

1654 1655 1656 1657
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1658 1659
}

1660 1661
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1662
{
1663
	struct timespec tu;
1664 1665 1666 1667 1668 1669 1670

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1671
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1672 1673
}

1674 1675 1676
/*
 * Functions related to boot-time initialization:
 */
1677
static void init_hrtimers_cpu(int cpu)
1678
{
1679
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1680 1681
	int i;

1682
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1683
		cpu_base->clock_base[i].cpu_base = cpu_base;
1684 1685
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1686

1687
	cpu_base->cpu = cpu;
1688
	hrtimer_init_hres(cpu_base);
1689 1690 1691 1692
}

#ifdef CONFIG_HOTPLUG_CPU

1693
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1694
				struct hrtimer_clock_base *new_base)
1695 1696
{
	struct hrtimer *timer;
1697
	struct timerqueue_node *node;
1698

1699 1700
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1701
		BUG_ON(hrtimer_callback_running(timer));
1702
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1703 1704 1705 1706 1707 1708 1709

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1710
		timer->base = new_base;
1711
		/*
T
Thomas Gleixner 已提交
1712 1713 1714 1715 1716 1717
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1718
		 */
1719
		enqueue_hrtimer(timer, new_base);
1720

T
Thomas Gleixner 已提交
1721 1722
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1723 1724 1725
	}
}

1726
static void migrate_hrtimers(int scpu)
1727
{
1728
	struct hrtimer_cpu_base *old_base, *new_base;
1729
	int i;
1730

1731 1732
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1733 1734 1735 1736

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1737 1738 1739 1740
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1741 1742
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1743

1744
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1745
		migrate_hrtimer_list(&old_base->clock_base[i],
1746
				     &new_base->clock_base[i]);
1747 1748
	}

1749 1750
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1751

1752 1753 1754
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1755
}
1756

1757 1758
#endif /* CONFIG_HOTPLUG_CPU */

1759
static int hrtimer_cpu_notify(struct notifier_block *self,
1760 1761
					unsigned long action, void *hcpu)
{
1762
	int scpu = (long)hcpu;
1763 1764 1765 1766

	switch (action) {

	case CPU_UP_PREPARE:
1767
	case CPU_UP_PREPARE_FROZEN:
1768
		init_hrtimers_cpu(scpu);
1769 1770 1771
		break;

#ifdef CONFIG_HOTPLUG_CPU
1772 1773 1774 1775
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1776
	case CPU_DEAD:
1777
	case CPU_DEAD_FROZEN:
1778
	{
1779
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1780
		migrate_hrtimers(scpu);
1781
		break;
1782
	}
1783 1784 1785 1786 1787 1788 1789 1790 1791
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1792
static struct notifier_block hrtimers_nb = {
1793 1794 1795 1796 1797 1798 1799 1800
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1801 1802 1803
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1804 1805
}

1806
/**
1807
 * schedule_hrtimeout_range_clock - sleep until timeout
1808
 * @expires:	timeout value (ktime_t)
1809
 * @delta:	slack in expires timeout (ktime_t)
1810
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1811
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1812
 */
1813 1814 1815
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1829
	 * A NULL parameter means "infinite"
1830 1831 1832 1833 1834 1835 1836
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1837
	hrtimer_init_on_stack(&t.timer, clock, mode);
1838
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1839 1840 1841

	hrtimer_init_sleeper(&t, current);

1842
	hrtimer_start_expires(&t.timer, mode);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1920
EXPORT_SYMBOL_GPL(schedule_hrtimeout);