fw-device.c 25.4 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
27
#include <linux/idr.h>
28
#include <linux/string.h>
29 30
#include <linux/rwsem.h>
#include <linux/semaphore.h>
31
#include <asm/system.h>
32
#include <linux/ctype.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

static int is_fw_unit(struct device *dev);

55
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key == CSR_VENDOR && value == id->vendor)
			match |= FW_MATCH_VENDOR;
		if (key == CSR_MODEL && value == id->model)
			match |= FW_MATCH_MODEL;
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
			match |= FW_MATCH_SPECIFIER_ID;
		if (key == CSR_VERSION && value == id->version)
			match |= FW_MATCH_VERSION;
	}

	return (match & id->match_flags) == id->match_flags;
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = fw_driver(drv);
	int i;

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

	for (i = 0; driver->id_table[i].match_flags != 0; i++) {
		if (match_unit_directory(unit->directory, &driver->id_table[i]))
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

static int
135
fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
136 137 138 139
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

140
	get_modalias(unit, modalias, sizeof(modalias));
141

142
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
143 144 145 146 147 148
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
149
	.name = "firewire",
150 151 152 153 154 155 156
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
157
	struct fw_card *card = device->card;
158 159
	unsigned long flags;

160 161 162 163
	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled.
	 */
164
	spin_lock_irqsave(&card->lock, flags);
165
	device->node->data = NULL;
166
	spin_unlock_irqrestore(&card->lock, flags);
167 168 169 170

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
171
	fw_card_put(card);
172 173 174 175
}

int fw_device_enable_phys_dma(struct fw_device *device)
{
176 177 178 179 180
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

181 182
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
183
						     generation);
184 185 186
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

187 188 189 190 191 192 193 194 195 196 197 198
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir;
199 200 201
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
202 203 204 205 206 207 208 209

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
210 211 212 213 214 215 216
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
217

218
	return ret;
219 220 221 222 223 224 225 226 227 228 229 230
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir, *block = NULL, *p, *end;
231
	int length, key, value, last_key = 0, ret = -ENOENT;
232 233
	char *b;

234 235
	down_read(&fw_device_rwsem);

236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (attr->key == last_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			block = ci.p - 1 + value;
		last_key = key;
	}

	if (block == NULL)
250
		goto out;
251 252 253

	length = min(block[0] >> 16, 256U);
	if (length < 3)
254
		goto out;
255 256 257

	if (block[1] != 0 || block[2] != 0)
		/* Unknown encoding. */
258
		goto out;
259

260 261 262 263
	if (buf == NULL) {
		ret = length * 4;
		goto out;
	}
264 265 266 267 268 269 270 271 272

	b = buf;
	end = &block[length + 1];
	for (p = &block[3]; p < end; p++, b += 4)
		* (u32 *) b = (__force u32) __cpu_to_be32(*p);

	/* Strip trailing whitespace and add newline. */
	while (b--, (isspace(*b) || *b == '\0') && b > buf);
	strcpy(b + 1, "\n");
273 274 275
	ret = b + 2 - buf;
 out:
	up_read(&fw_device_rwsem);
276

277
	return ret;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

static void
295 296 297
init_fw_attribute_group(struct device *dev,
			struct device_attribute *attrs,
			struct fw_attribute_group *group)
298 299
{
	struct device_attribute *attr;
300 301 302 303
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
304 305 306 307 308

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
309
		group->attrs[j++] = &attr->attr;
310 311
	}

312 313 314 315 316 317
	BUG_ON(j >= ARRAY_SIZE(group->attrs));
	group->attrs[j++] = NULL;
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
	dev->groups = group->groups;
318 319
}

320
static ssize_t
321 322
modalias_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
323 324 325 326 327 328 329 330 331 332 333
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

static ssize_t
334 335
rom_index_show(struct device *dev,
	       struct device_attribute *attr, char *buf)
336
{
337 338
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
339

340 341
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
342 343
}

344 345 346 347
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
348 349
};

350
static ssize_t
351
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
352
{
353
	struct fw_device *device = fw_device(dev);
354
	size_t length;
355

356 357 358 359
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
360

361
	return length;
362 363
}

364 365 366 367
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
368 369 370 371 372 373
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
374

375
	return ret;
376 377
}

378 379
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
380
	__ATTR_RO(guid),
381
	__ATTR_NULL,
382 383
};

384 385
static int
read_rom(struct fw_device *device, int generation, int index, u32 *data)
386
{
J
Jay Fenlason 已提交
387
	int rcode;
388 389 390

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
391

J
Jay Fenlason 已提交
392
	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
393
			device->node_id, generation, device->max_speed,
J
Jay Fenlason 已提交
394 395 396
			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
			data, 4);
	be32_to_cpus(data);
397

J
Jay Fenlason 已提交
398
	return rcode;
399 400
}

401 402 403
#define READ_BIB_ROM_SIZE	256
#define READ_BIB_STACK_SIZE	16

404 405 406 407 408 409 410 411
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
412
{
413
	u32 *rom, *stack, *old_rom, *new_rom;
414 415 416 417 418 419 420 421 422
	u32 sp, key;
	int i, end, length, ret = -1;

	rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
		      sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
	if (rom == NULL)
		return -ENOMEM;

	stack = &rom[READ_BIB_ROM_SIZE];
423

424 425
	device->max_speed = SCODE_100;

426 427
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
428
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
429
			goto out;
430 431
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
432 433 434 435
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
436 437
		 * retry mechanism will try again later.
		 */
438
		if (i == 0 && rom[i] == 0)
439
			goto out;
440 441
	}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
463 464
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
465 466 467 468 469
				break;
			device->max_speed--;
		}
	}

470 471
	/*
	 * Now parse the config rom.  The config rom is a recursive
472 473 474
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
475 476
	 * start things off.
	 */
477 478 479 480
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
481 482
		/*
		 * Pop the next block reference of the stack.  The
483 484
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
485 486
		 * block.
		 */
487 488
		key = stack[--sp];
		i = key & 0xffffff;
489
		if (i >= READ_BIB_ROM_SIZE)
490 491 492 493
			/*
			 * The reference points outside the standard
			 * config rom area, something's fishy.
			 */
494
			goto out;
495 496

		/* Read header quadlet for the block to get the length. */
497
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
498
			goto out;
499 500
		end = i + (rom[i] >> 16) + 1;
		i++;
501
		if (end > READ_BIB_ROM_SIZE)
502 503
			/*
			 * This block extends outside standard config
504 505
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
506 507
			 * device.
			 */
508
			goto out;
509

510 511
		/*
		 * Now read in the block.  If this is a directory
512
		 * block, check the entries as we read them to see if
513 514
		 * it references another block, and push it in that case.
		 */
515
		while (i < end) {
516 517
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
518
				goto out;
519
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
520
			    sp < READ_BIB_STACK_SIZE)
521 522 523 524 525 526 527
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

528 529 530
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
	if (new_rom == NULL)
531
		goto out;
532 533 534

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
535
	device->config_rom_length = length;
536 537 538
	up_write(&fw_device_rwsem);

	kfree(old_rom);
539
	ret = 0;
540
	device->cmc = rom[2] & 1 << 30;
541 542
 out:
	kfree(rom);
543

544
	return ret;
545 546 547 548 549 550 551 552 553
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

554 555 556 557 558
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

559 560
static int is_fw_unit(struct device *dev)
{
561
	return dev->type == &fw_unit_type;
562 563 564 565 566 567 568 569 570 571 572 573 574 575
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

576 577 578 579
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
580
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
581 582 583 584 585 586 587
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
588
		unit->device.type = &fw_unit_type;
589
		unit->device.parent = &device->device;
590
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
591

592 593 594
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
595 596 597 598 599 600 601
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
602 603 604 605 606
	}
}

static int shutdown_unit(struct device *device, void *data)
{
607
	device_unregister(device);
608 609 610 611

	return 0;
}

612 613 614 615 616 617 618 619
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

620 621 622
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;

623
struct fw_device *fw_device_get_by_devt(dev_t devt)
624 625 626
{
	struct fw_device *device;

627
	down_read(&fw_device_rwsem);
628
	device = idr_find(&fw_device_idr, MINOR(devt));
629 630
	if (device)
		fw_device_get(device);
631
	up_read(&fw_device_rwsem);
632 633 634 635

	return device;
}

636 637 638 639
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
640 641
	int minor = MINOR(device->device.devt);

642
	fw_device_cdev_remove(device);
643 644
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
645

646
	down_write(&fw_device_rwsem);
647
	idr_remove(&fw_device_idr, minor);
648
	up_write(&fw_device_rwsem);
649
	fw_device_put(device);
650 651
}

652 653 654 655
static struct device_type fw_device_type = {
	.release	= fw_device_release,
};

656 657
/*
 * These defines control the retry behavior for reading the config
658 659 660 661 662 663
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
664 665
 * are plugged in, they're all getting read within one second.
 */
666

667 668
#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
669 670 671 672 673 674
#define INITIAL_DELAY	(HZ / 2)

static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
675
	int minor, err;
676

677 678
	/*
	 * All failure paths here set node->data to NULL, so that we
679
	 * don't try to do device_for_each_child() on a kfree()'d
680 681
	 * device.
	 */
682

683
	if (read_bus_info_block(device, device->generation) < 0) {
684 685
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
686 687 688
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
689
			fw_notify("giving up on config rom for node id %x\n",
690
				  device->node_id);
691 692
			if (device->node == device->card->root_node)
				schedule_delayed_work(&device->card->work, 0);
693 694 695 696 697
			fw_device_release(&device->device);
		}
		return;
	}

698
	err = -ENOMEM;
699 700

	fw_device_get(device);
701
	down_write(&fw_device_rwsem);
702 703
	if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
		err = idr_get_new(&fw_device_idr, device, &minor);
704
	up_write(&fw_device_rwsem);
705

706 707 708
	if (err < 0)
		goto error;

709
	device->device.bus = &fw_bus_type;
710
	device->device.type = &fw_device_type;
711
	device->device.parent = device->card->device;
712
	device->device.devt = MKDEV(fw_cdev_major, minor);
713
	dev_set_name(&device->device, "fw%d", minor);
714

715 716 717
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
718 719
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
720
		goto error_with_cdev;
721 722 723 724
	}

	create_units(device);

725 726
	/*
	 * Transition the device to running state.  If it got pulled
727 728 729 730 731
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
732 733
	 * fw_node_event().
	 */
734
	if (atomic_cmpxchg(&device->state,
735
		    FW_DEVICE_INITIALIZING,
736
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN) {
737
		fw_device_shutdown(work);
738 739 740 741
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
742
				  dev_name(&device->device),
743 744 745 746 747
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
748
				  dev_name(&device->device),
749 750
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
751
		device->config_rom_retries = 0;
752
	}
753

754 755
	/*
	 * Reschedule the IRM work if we just finished reading the
756 757
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
758 759
	 * pretty harmless.
	 */
760 761 762 763 764
	if (device->node == device->card->root_node)
		schedule_delayed_work(&device->card->work, 0);

	return;

765
 error_with_cdev:
766
	down_write(&fw_device_rwsem);
767
	idr_remove(&fw_device_idr, minor);
768
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
769
 error:
770 771 772
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
773 774 775 776 777 778 779
}

static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

780 781
	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
782
		driver->update(unit);
783 784
		up(&dev->sem);
	}
785 786 787 788

	return 0;
}

789 790 791 792 793
static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

794
	fw_device_cdev_update(device);
795 796 797
	device_for_each_child(&device->device, NULL, update_unit);
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
enum {
	REREAD_BIB_ERROR,
	REREAD_BIB_GONE,
	REREAD_BIB_UNCHANGED,
	REREAD_BIB_CHANGED,
};

/* Reread and compare bus info block and header of root directory */
static int reread_bus_info_block(struct fw_device *device, int generation)
{
	u32 q;
	int i;

	for (i = 0; i < 6; i++) {
		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
			return REREAD_BIB_ERROR;

		if (i == 0 && q == 0)
			return REREAD_BIB_GONE;

		if (i > device->config_rom_length || q != device->config_rom[i])
			return REREAD_BIB_CHANGED;
	}

	return REREAD_BIB_UNCHANGED;
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
	int node_id = device->node_id;

	switch (reread_bus_info_block(device, device->generation)) {
	case REREAD_BIB_ERROR:
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY / 2);

			return;
		}
		goto give_up;

	case REREAD_BIB_GONE:
		goto gone;

	case REREAD_BIB_UNCHANGED:
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_INITIALIZING,
			    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;

	case REREAD_BIB_CHANGED:
		break;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

	if (read_bus_info_block(device, device->generation) < 0) {
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);

			return;
		}
		goto give_up;
	}

	create_units(device);

	if (atomic_cmpxchg(&device->state,
		    FW_DEVICE_INITIALIZING,
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
		goto gone;

884
	fw_notify("refreshed device %s\n", dev_name(&device->device));
885 886 887 888
	device->config_rom_retries = 0;
	goto out;

 give_up:
889
	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
890 891 892 893 894 895 896 897
 gone:
	atomic_set(&device->state, FW_DEVICE_SHUTDOWN);
	fw_device_shutdown(work);
 out:
	if (node_id == card->root_node->node_id)
		schedule_delayed_work(&card->work, 0);
}

898 899 900 901 902 903 904 905 906
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;
907
 create:
908 909 910 911
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

912 913
		/*
		 * Do minimal intialization of the device here, the
914 915 916 917
		 * rest will happen in fw_device_init().  We need the
		 * card and node so we can read the config rom and we
		 * need to do device_initialize() now so
		 * device_for_each_child() in FW_NODE_UPDATED is
918 919
		 * doesn't freak out.
		 */
920
		device_initialize(&device->device);
921
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
922
		device->card = fw_card_get(card);
923 924 925
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
926
		INIT_LIST_HEAD(&device->client_list);
927

928 929
		/*
		 * Set the node data to point back to this device so
930
		 * FW_NODE_UPDATED callbacks can update the node_id
931 932
		 * and generation for the device.
		 */
933 934
		node->data = device;

935 936
		/*
		 * Many devices are slow to respond after bus resets,
937 938
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
939 940
		 * first config rom scan half a second after bus reset.
		 */
941 942 943 944
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	case FW_NODE_INITIATED_RESET:
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
			schedule_delayed_work(&device->work,
				node == card->local_node ? 0 : INITIAL_DELAY);
		}
		break;

962 963 964 965 966 967
	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
968
		smp_wmb();  /* update node_id before generation */
969
		device->generation = card->generation;
970 971 972 973
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
974 975 976 977 978 979 980
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

981 982
		/*
		 * Destroy the device associated with the node.  There
983 984 985 986 987 988 989 990
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
991 992
		 * to create the device.
		 */
993
		device = node->data;
994
		if (atomic_xchg(&device->state,
995 996
				FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
997 998 999 1000 1001
			schedule_delayed_work(&device->work, 0);
		}
		break;
	}
}