fw-device.c 22.5 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
27
#include <linux/idr.h>
28 29
#include <linux/rwsem.h>
#include <asm/semaphore.h>
30
#include <asm/system.h>
31
#include <linux/ctype.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

static int is_fw_unit(struct device *dev);

54
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key == CSR_VENDOR && value == id->vendor)
			match |= FW_MATCH_VENDOR;
		if (key == CSR_MODEL && value == id->model)
			match |= FW_MATCH_MODEL;
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
			match |= FW_MATCH_SPECIFIER_ID;
		if (key == CSR_VERSION && value == id->version)
			match |= FW_MATCH_VERSION;
	}

	return (match & id->match_flags) == id->match_flags;
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = fw_driver(drv);
	int i;

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

	for (i = 0; driver->id_table[i].match_flags != 0; i++) {
		if (match_unit_directory(unit->directory, &driver->id_table[i]))
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

static int
134
fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
135 136 137 138
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

139
	get_modalias(unit, modalias, sizeof(modalias));
140

141
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
142 143 144 145 146 147
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
148
	.name = "firewire",
149 150 151 152 153 154 155
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
156
	struct fw_card *card = device->card;
157 158
	unsigned long flags;

159 160 161 162
	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled.
	 */
163 164 165 166 167 168 169
	spin_lock_irqsave(&device->card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
170
	atomic_dec(&card->device_count);
171 172 173 174
}

int fw_device_enable_phys_dma(struct fw_device *device)
{
175 176 177 178 179
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

180 181
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
182
						     generation);
183 184 185
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir;
	int key, value;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (attr->key == key)
			return snprintf(buf, buf ? PAGE_SIZE : 0,
					"0x%06x\n", value);

	return -ENOENT;
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir, *block = NULL, *p, *end;
	int length, key, value, last_key = 0;
	char *b;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (attr->key == last_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			block = ci.p - 1 + value;
		last_key = key;
	}

	if (block == NULL)
		return -ENOENT;

	length = min(block[0] >> 16, 256U);
	if (length < 3)
		return -ENOENT;

	if (block[1] != 0 || block[2] != 0)
		/* Unknown encoding. */
		return -ENOENT;

	if (buf == NULL)
		return length * 4;

	b = buf;
	end = &block[length + 1];
	for (p = &block[3]; p < end; p++, b += 4)
		* (u32 *) b = (__force u32) __cpu_to_be32(*p);

	/* Strip trailing whitespace and add newline. */
	while (b--, (isspace(*b) || *b == '\0') && b > buf);
	strcpy(b + 1, "\n");

	return b + 2 - buf;
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

static void
281 282 283
init_fw_attribute_group(struct device *dev,
			struct device_attribute *attrs,
			struct fw_attribute_group *group)
284 285
{
	struct device_attribute *attr;
286 287 288 289
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
290 291 292 293 294

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
295
		group->attrs[j++] = &attr->attr;
296 297
	}

298 299 300 301 302 303
	BUG_ON(j >= ARRAY_SIZE(group->attrs));
	group->attrs[j++] = NULL;
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
	dev->groups = group->groups;
304 305
}

306
static ssize_t
307 308
modalias_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
309 310 311 312 313 314 315 316 317 318 319
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

static ssize_t
320 321
rom_index_show(struct device *dev,
	       struct device_attribute *attr, char *buf)
322
{
323 324
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
325

326 327
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
328 329
}

330 331 332 333
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
334 335
};

336
static ssize_t
337
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
338
{
339
	struct fw_device *device = fw_device(dev);
340

341 342 343
	memcpy(buf, device->config_rom, device->config_rom_length * 4);

	return device->config_rom_length * 4;
344 345
}

346 347 348 349 350
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);

351 352
	return snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
			device->config_rom[3], device->config_rom[4]);
353 354
}

355 356
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
357
	__ATTR_RO(guid),
358
	__ATTR_NULL,
359 360
};

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
struct read_quadlet_callback_data {
	struct completion done;
	int rcode;
	u32 data;
};

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct read_quadlet_callback_data *callback_data = data;

	if (rcode == RCODE_COMPLETE)
		callback_data->data = be32_to_cpu(*(__be32 *)payload);
	callback_data->rcode = rcode;
	complete(&callback_data->done);
}

379 380
static int
read_rom(struct fw_device *device, int generation, int index, u32 *data)
381 382 383 384
{
	struct read_quadlet_callback_data callback_data;
	struct fw_transaction t;
	u64 offset;
385 386 387

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
388 389 390 391 392

	init_completion(&callback_data.done);

	offset = 0xfffff0000400ULL + index * 4;
	fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
393
			device->node_id, generation, device->max_speed,
394 395 396 397 398 399 400 401 402
			offset, NULL, 4, complete_transaction, &callback_data);

	wait_for_completion(&callback_data.done);

	*data = callback_data.data;

	return callback_data.rcode;
}

403 404 405
#define READ_BIB_ROM_SIZE	256
#define READ_BIB_STACK_SIZE	16

406 407 408 409 410 411 412 413
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
414
{
415 416 417 418 419 420 421 422 423 424
	u32 *rom, *stack;
	u32 sp, key;
	int i, end, length, ret = -1;

	rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
		      sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
	if (rom == NULL)
		return -ENOMEM;

	stack = &rom[READ_BIB_ROM_SIZE];
425

426 427
	device->max_speed = SCODE_100;

428 429
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
430
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
431
			goto out;
432 433
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
434 435 436 437
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
438 439
		 * retry mechanism will try again later.
		 */
440
		if (i == 0 && rom[i] == 0)
441
			goto out;
442 443
	}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
465 466
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
467 468 469 470 471
				break;
			device->max_speed--;
		}
	}

472 473
	/*
	 * Now parse the config rom.  The config rom is a recursive
474 475 476
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
477 478
	 * start things off.
	 */
479 480 481 482
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
483 484
		/*
		 * Pop the next block reference of the stack.  The
485 486
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
487 488
		 * block.
		 */
489 490
		key = stack[--sp];
		i = key & 0xffffff;
491
		if (i >= READ_BIB_ROM_SIZE)
492 493 494 495
			/*
			 * The reference points outside the standard
			 * config rom area, something's fishy.
			 */
496
			goto out;
497 498

		/* Read header quadlet for the block to get the length. */
499
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
500
			goto out;
501 502
		end = i + (rom[i] >> 16) + 1;
		i++;
503
		if (end > READ_BIB_ROM_SIZE)
504 505
			/*
			 * This block extends outside standard config
506 507
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
508 509
			 * device.
			 */
510
			goto out;
511

512 513
		/*
		 * Now read in the block.  If this is a directory
514
		 * block, check the entries as we read them to see if
515 516
		 * it references another block, and push it in that case.
		 */
517
		while (i < end) {
518 519
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
520
				goto out;
521
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
522
			    sp < READ_BIB_STACK_SIZE)
523 524 525 526 527 528 529 530 531
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

	device->config_rom = kmalloc(length * 4, GFP_KERNEL);
	if (device->config_rom == NULL)
532
		goto out;
533 534
	memcpy(device->config_rom, rom, length * 4);
	device->config_rom_length = length;
535 536 537
	ret = 0;
 out:
	kfree(rom);
538

539
	return ret;
540 541 542 543 544 545 546 547 548
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

549 550 551 552 553
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

554 555
static int is_fw_unit(struct device *dev)
{
556
	return dev->type == &fw_unit_type;
557 558 559 560 561 562 563 564 565 566 567 568 569 570
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

571 572 573 574
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
575
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
576 577 578 579 580 581 582
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
583
		unit->device.type = &fw_unit_type;
584
		unit->device.parent = &device->device;
585
		snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
586 587
			 "%s.%d", device->device.bus_id, i++);

588 589 590
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
591 592 593 594 595 596 597
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
598 599 600 601 602
	}
}

static int shutdown_unit(struct device *device, void *data)
{
603
	device_unregister(device);
604 605 606 607

	return 0;
}

608
static DECLARE_RWSEM(idr_rwsem);
609 610 611
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;

612
struct fw_device *fw_device_get_by_devt(dev_t devt)
613 614 615
{
	struct fw_device *device;

616
	down_read(&idr_rwsem);
617
	device = idr_find(&fw_device_idr, MINOR(devt));
618 619
	if (device)
		fw_device_get(device);
620
	up_read(&idr_rwsem);
621 622 623 624

	return device;
}

625 626 627 628
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
629 630
	int minor = MINOR(device->device.devt);

631
	fw_device_cdev_remove(device);
632 633
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
634 635 636 637 638

	down_write(&idr_rwsem);
	idr_remove(&fw_device_idr, minor);
	up_write(&idr_rwsem);
	fw_device_put(device);
639 640
}

641 642 643 644
static struct device_type fw_device_type = {
	.release	= fw_device_release,
};

645 646
/*
 * These defines control the retry behavior for reading the config
647 648 649 650 651 652
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
653 654
 * are plugged in, they're all getting read within one second.
 */
655

656 657
#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
658 659 660 661 662 663
#define INITIAL_DELAY	(HZ / 2)

static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
664
	int minor, err;
665

666 667
	/*
	 * All failure paths here set node->data to NULL, so that we
668
	 * don't try to do device_for_each_child() on a kfree()'d
669 670
	 * device.
	 */
671

672
	if (read_bus_info_block(device, device->generation) < 0) {
673 674
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
675 676 677
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
678
			fw_notify("giving up on config rom for node id %x\n",
679
				  device->node_id);
680 681
			if (device->node == device->card->root_node)
				schedule_delayed_work(&device->card->work, 0);
682 683 684 685 686
			fw_device_release(&device->device);
		}
		return;
	}

687
	err = -ENOMEM;
688 689

	fw_device_get(device);
690
	down_write(&idr_rwsem);
691 692
	if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
		err = idr_get_new(&fw_device_idr, device, &minor);
693
	up_write(&idr_rwsem);
694

695 696 697
	if (err < 0)
		goto error;

698
	device->device.bus = &fw_bus_type;
699
	device->device.type = &fw_device_type;
700
	device->device.parent = device->card->device;
701
	device->device.devt = MKDEV(fw_cdev_major, minor);
702
	snprintf(device->device.bus_id, sizeof(device->device.bus_id),
703
		 "fw%d", minor);
704

705 706 707
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
708 709
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
710
		goto error_with_cdev;
711 712 713 714
	}

	create_units(device);

715 716
	/*
	 * Transition the device to running state.  If it got pulled
717 718 719 720 721
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
722 723
	 * fw_node_event().
	 */
724
	if (atomic_cmpxchg(&device->state,
725
		    FW_DEVICE_INITIALIZING,
726
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN) {
727
		fw_device_shutdown(&device->work.work);
728 729 730 731 732 733 734 735 736 737 738 739 740 741
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
				  device->device.bus_id,
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
				  device->device.bus_id,
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
	}
742

743 744
	/*
	 * Reschedule the IRM work if we just finished reading the
745 746
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
747 748
	 * pretty harmless.
	 */
749 750 751 752 753
	if (device->node == device->card->root_node)
		schedule_delayed_work(&device->card->work, 0);

	return;

754
 error_with_cdev:
755
	down_write(&idr_rwsem);
756
	idr_remove(&fw_device_idr, minor);
757
	up_write(&idr_rwsem);
S
Stefan Richter 已提交
758
 error:
759 760 761
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
762 763 764 765 766 767 768
}

static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

769 770
	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
771
		driver->update(unit);
772 773
		up(&dev->sem);
	}
774 775 776 777

	return 0;
}

778 779 780 781 782
static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

783
	fw_device_cdev_update(device);
784 785 786
	device_for_each_child(&device->device, NULL, update_unit);
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;

		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

801 802
		/*
		 * Do minimal intialization of the device here, the
803 804 805 806
		 * rest will happen in fw_device_init().  We need the
		 * card and node so we can read the config rom and we
		 * need to do device_initialize() now so
		 * device_for_each_child() in FW_NODE_UPDATED is
807 808
		 * doesn't freak out.
		 */
809
		device_initialize(&device->device);
810
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
811 812
		atomic_inc(&card->device_count);
		device->card = card;
813 814 815
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
816
		INIT_LIST_HEAD(&device->client_list);
817

818 819
		/*
		 * Set the node data to point back to this device so
820
		 * FW_NODE_UPDATED callbacks can update the node_id
821 822
		 * and generation for the device.
		 */
823 824
		node->data = device;

825 826
		/*
		 * Many devices are slow to respond after bus resets,
827 828
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
829 830
		 * first config rom scan half a second after bus reset.
		 */
831 832 833 834 835 836 837 838 839 840
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
841
		smp_wmb();  /* update node_id before generation */
842
		device->generation = card->generation;
843 844 845 846
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
847 848 849 850 851 852 853
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

854 855
		/*
		 * Destroy the device associated with the node.  There
856 857 858 859 860 861 862 863
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
864 865
		 * to create the device.
		 */
866
		device = node->data;
867
		if (atomic_xchg(&device->state,
868 869
				FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
870 871 872 873 874
			schedule_delayed_work(&device->work, 0);
		}
		break;
	}
}