- 27 1月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
KOSAKI Motohiro noticed the following race: > CPU0 CPU1 > -------------------------------------------------------- > deactivate_task() > task->state = TASK_UNINTERRUPTIBLE; > activate_task() > rq->nr_uninterruptible--; > > schedule() > deactivate_task() > rq->nr_uninterruptible++; > Kosaki-San's scenario is possible when CPU0 runs __sched_setscheduler() against CPU1's current @task. __sched_setscheduler() does a dequeue/enqueue in order to move the task to its new queue (position) to reflect the newly provided scheduling parameters. However it should be completely invariant to nr_uninterruptible accounting, sched_setscheduler() doesn't affect readyness to run, merely policy on when to run. So convert the inappropriate activate/deactivate_task usage to enqueue/dequeue_task, which avoids the nr_uninterruptible accounting. Also convert the two other sites: __migrate_task() and normalize_task() that still use activate/deactivate_task. These sites aren't really a problem since __migrate_task() will only be called on non-running task (and therefore are immume to the described problem) and normalize_task() isn't ever used on regular systems. Also remove the comments from activate/deactivate_task since they're misleading at best. Reported-by: NKOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1327486224.2614.45.camel@laptopSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 1月, 2012 1 次提交
-
-
由 Hiroshi Shimamoto 提交于
Signed-off-by: NHiroshi Shimamoto <h-shimamoto@ct.jp.nec.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/4F0B8525.8070901@ct.jp.nec.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 12月, 2011 1 次提交
-
-
由 Arun Sharma 提交于
If CONFIG_SCHEDSTATS is defined, the kernel maintains information about how long the task was sleeping or in the case of iowait, blocking in the kernel before getting woken up. This will be useful for sleep time profiling. Note: this information is only provided for sched_fair. Other scheduling classes may choose to provide this in the future. Note: the delay includes the time spent on the runqueue as well. Signed-off-by: NArun Sharma <asharma@fb.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Andrew Vagin <avagin@openvz.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1324512940-32060-2-git-send-email-asharma@fb.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 12月, 2011 1 次提交
-
-
由 Dave Jones 提交于
The panic-on-framebuffer code seems to cause a schedule to occur during an oops. This causes a bunch of extra spew as can be seen in: https://bugzilla.redhat.com/attachment.cgi?id=549230 Don't do scheduler debug checks when we are oopsing already. Signed-off-by: NDave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/20111222213929.GA4722@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 21 12月, 2011 2 次提交
-
-
由 Kamalesh Babulal 提交于
Remove cfs bandwidth period check from tg_set_cfs_period. Invalid bandwidth period's lower/upper limits are denoted by min_cfs_quota_period/max_cfs_quota_period repsectively, and are checked against valid period in tg_set_cfs_bandwidth(). As pjt pointed out, negative input will result in very large unsigned numbers and will be caught by the max allowed period test. Signed-off-by: NKamalesh Babulal <kamalesh@linux.vnet.ibm.com> Acked-by: NPaul Turner <pjt@google.com> [ammended changelog to mention negative values] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111210135925.GA14593@linux.vnet.ibm.com -- kernel/sched/core.c | 3 --- 1 file changed, 3 deletions(-) Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Mike reported a 13% drop in netperf TCP_RR performance due to the new remote wakeup code. Suresh too noticed some performance issues with it. Reducing the IPIs to only cross cache domains solves the observed performance issues. Reported-by: NSuresh Siddha <suresh.b.siddha@intel.com> Reported-by: NMike Galbraith <efault@gmx.de> Acked-by: NSuresh Siddha <suresh.b.siddha@intel.com> Acked-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Kleikamp <dave.kleikamp@oracle.com> Link: http://lkml.kernel.org/r/1323338531.17673.7.camel@twinsSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 12月, 2011 1 次提交
-
-
由 Kees Cook 提交于
Wrap another ->real_parent dereference while under rcu_read_lock. Signed-off-by: NKees Cook <keescook@chromium.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Glauber Costa <glommer@parallels.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Link: http://lkml.kernel.org/r/20111215164918.GA13003@www.outflux.net [ tidied up the changelog ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 07 12月, 2011 4 次提交
-
-
由 Peter Zijlstra 提交于
Now that we initialize jump_labels before sched_init() we can use them for the debug features without having to worry about a window where they have the wrong setting. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-vpreo4hal9e0kzqmg5y0io2k@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Glauber Costa 提交于
The order of parameters is inverted. The index parameter should come first. Signed-off-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1322863119-14225-3-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Glauber Costa 提交于
Now that we're pointing cpuacct's root cgroup to cpustat and accounting through task_group_account_field(), we should not access cpustat directly. Since it is done anyway inside the acessor function, we end up accounting it twice, which is wrong. Signed-off-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1322863119-14225-2-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Glauber Costa 提交于
Right now, after we collect tick statistics for user and system and store them in a well known location, we keep the same statistics again for cpuacct. Since cpuacct is hierarchical, the numbers for the root cgroup should be absolutely equal to the system-wide numbers. So it would be better to just use it: this patch changes cpuacct accounting in a way that the cpustat statistics are kept in a struct kernel_cpustat percpu array. In the root cgroup case, we just point it to the main array. The rest of the hierarchy walk can be totally disabled later with a static branch - but I am not doing it here. Signed-off-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Tuner <pjt@google.com> Link: http://lkml.kernel.org/r/1322498719-2255-4-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 12月, 2011 6 次提交
-
-
由 Glauber Costa 提交于
We already have a pointer to the cgroup parent (whose data is more likely to be in the cache than this, anyway), so there is no need to have this one in cpuacct. This patch makes the underlying cgroup be used instead. Signed-off-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Paul Tuner <pjt@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1322498719-2255-3-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Glauber Costa 提交于
This patch changes fields in cpustat from a structure, to an u64 array. Math gets easier, and the code is more flexible. Signed-off-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Tuner <pjt@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1322498719-2255-2-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group because sched groups are duplicated for the SD_OVERLAP scheduler domain] and for each cpu that enters and exits idle, this parameter will be updated in each scheduler group of the scheduler domain that this cpu belongs to. To avoid the frequent update of this state as the cpu enters and exits idle, the update of the stat during idle exit is delayed to the first timer tick that happens after the cpu becomes busy. This is done using NOHZ_IDLE flag in the struct rq's nohz_flags. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Introduce nohz_flags in the struct rq, which will track these two flags for now. NOHZ_TICK_STOPPED keeps track of the tick stopped status that gets set when the tick is stopped. It will be used to update the nohz idle load balancer data structures during the first busy tick after the tick is restarted. At this first busy tick after tickless idle, NOHZ_TICK_STOPPED flag will be reset. This will minimize the nohz idle load balancer status updates that currently happen for every tickless exit, making it more scalable when there are many logical cpu's that enter and exit idle often. NOHZ_BALANCE_KICK will track the need for nohz idle load balance on this rq. This will replace the nohz_balance_kick in the rq, which was not being updated atomically. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20111202010832.499438999@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
For the SD_OVERLAP domain, sched_groups for each CPU's sched_domain are privately allocated and not shared with any other cpu. So the sched group allocation should come from the cpu's node for which SD_OVERLAP sched domain is being setup. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111118230554.164910950@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Mike Galbraith 提交于
This is another case where we are on our way to schedule(), so can save a useless clock update and resulting microscopic vruntime update. Signed-off-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1321971686.6855.18.camel@marge.simson.netSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 11月, 2011 2 次提交
-
-
由 Peter Zijlstra 提交于
There's too many sched*.[ch] files in kernel/, give them their own directory. (No code changed, other than Makefile glue added.) Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Since once needs to do something at conferences and fixing compile warnings doesn't actually require much if any attention I decided to break up the sched.c #include "*.c" fest. This further modularizes the scheduler code. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-x0fcd3mnp8f9c99grcpewmhi@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 11月, 2011 3 次提交
-
-
由 Andrew Vagin 提交于
It improves perfomance, especially if autogroup is enabled. The size of set_task_rq() was 0x180 and now it is 0xa0. Signed-off-by: NAndrew Vagin <avagin@openvz.org> Acked-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1321020240-3874331-1-git-send-email-avagin@openvz.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Glauber Costa 提交于
Even though there are no siblings, the list should be initialized to not contain bogus values. Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NPaul Menage <paul@paulmenage.org> Acked-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1320182360-20043-2-git-send-email-glommer@parallels.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Paul Turner 提交于
Now that the linkage of jump-labels has been fixed they show a measurable improvement in overhead for the enabled-but-unused case. Workload is: 'taskset -c 0 perf stat --repeat 50 -e instructions,cycles,branches bash -c "for ((i=0;i<5;i++)); do $(dirname $0)/pipe-test 20000; done"' There's a speedup for all situations: instructions cycles branches ------------------------------------------------------------------------- Intel Westmere base 806611770 745895590 146765378 +jumplabel 803090165 (-0.44%) 713381840 (-4.36%) 144561130 AMD Barcelona base 824657415 740055589 148855354 +jumplabel 821056910 (-0.44%) 737558389 (-0.34%) 146635229 Signed-off-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111108042736.560831357@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 11月, 2011 2 次提交
-
-
由 Carsten Emde 提交于
In UP systems, the idle task is initialized using the init_task structure from which the command name is taken (currently "swapper"). In SMP systems, one idle task per CPU is forked by the worker thread from which the task structure is copied. The command name is, therefore, "kworker/0:0" or "kworker/0:1", if not updated. Since such update was lacking, all idle tasks in SMP systems were incorrectly named. This longtime bug was not discovered immediately, because there is no /proc/0 entry - the bug only becomes apparent when tracing is enabled. This patch sets the command name of the idle tasks in SMP systems to the name that is used in the INIT_TASK structure suffixed by a slash and the number of the CPU. Signed-off-by: NCarsten Emde <C.Emde@osadl.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111026211708.768925506@osadl.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 J. Bruce Fields 提交于
The return-value convention for these functions varies depending on whether they're interruptible or can timeout. It can be a little confusing--document it. Signed-off-by: NJ. Bruce Fields <bfields@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111006192246.GB28026@fieldses.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 10月, 2011 5 次提交
-
-
由 Thomas Gleixner 提交于
Avoid taking locks from debug prints, this avoids latencies on -rt, and improves reliability of the debug code. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Currently every sched_class::set_cpus_allowed() implementation has to copy the cpumask into task_struct::cpus_allowed, this is pointless, put this copy in the generic code. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NThomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-jhl5s9fckd9ptw1fzbqqlrd3@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
This task is preparatory for the migrate_disable() implementation, but stands on its own and provides a cleanup. It currently only converts those sites required for task-placement. Kosaki-san once mentioned replacing cpus_allowed with a proper cpumask_t instead of the NR_CPUS sized array it currently is, that would also require something like this. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NThomas Gleixner <tglx@linutronix.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Link: http://lkml.kernel.org/n/tip-e42skvaddos99psip0vce41o@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
rq's idle_at_tick is set to idle/busy during the timer tick depending on the cpu was idle or not. This will be used later in the load balance that will be done in the softirq context (which is a process context in -RT kernels). For nohz kernels, for the cpu doing nohz idle load balance on behalf of all the idle cpu's, its rq->idle_at_tick might have a stale value (which is recorded when it got the timer tick presumably when it is busy). As the nohz idle load balancing is also being done at the same place as the regular load balancing, nohz idle load balancing was bailing out when it sees rq's idle_at_tick not set. Thus leading to poor system utilization. Rename rq's idle_at_tick to idle_balance and set it when someone requests for nohz idle balance on an idle cpu. Reported-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111003220934.892350549@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Current use of smp call function to kick the nohz idle balance can deadlock in this scenario. 1. cpu-A did a generic_exec_single() to cpu-B and after queuing its call single data (csd) to the call single queue, cpu-A took a timer interrupt. Actual IPI to cpu-B to process the call single queue is not yet sent. 2. As part of the timer interrupt handler, cpu-A decided to kick cpu-B for the idle load balancing (sets cpu-B's rq->nohz_balance_kick to 1) and __smp_call_function_single() with nowait will queue the csd to the cpu-B's queue. But the generic_exec_single() won't send an IPI to cpu-B as the call single queue was not empty. 3. cpu-A is busy with lot of interrupts 4. Meanwhile cpu-B is entering and exiting idle and noticed that it has it's rq->nohz_balance_kick set to '1'. So it will go ahead and do the idle load balancer and clear its rq->nohz_balance_kick. 5. At this point, csd queued as part of the step-2 above is still locked and waiting to be serviced on cpu-B. 6. cpu-A is still busy with interrupt load and now it got another timer interrupt and as part of it decided to kick cpu-B for another idle load balancing (as it finds cpu-B's rq->nohz_balance_kick cleared in step-4 above) and does __smp_call_function_single() with the same csd that is still locked. 7. And we get a deadlock waiting for the csd_lock() in the __smp_call_function_single(). Main issue here is that cpu-B can service the idle load balancer kick request from cpu-A even with out receiving the IPI and this lead to doing multiple __smp_call_function_single() on the same csd leading to deadlock. To kick a cpu, scheduler already has the reschedule vector reserved. Use that mechanism (kick_process()) instead of using the generic smp call function mechanism to kick off the nohz idle load balancing and avoid the deadlock. [ This issue is present from 2.6.35+ kernels, but marking it -stable only from v3.0+ as the proposed fix depends on the scheduler_ipi() that is introduced recently. ] Reported-by: NPrarit Bhargava <prarit@redhat.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: stable@kernel.org # v3.0+ Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111003220934.834943260@sbsiddha-desk.sc.intel.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 10月, 2011 2 次提交
-
-
由 Thomas Gleixner 提交于
On -rt we observed hackbench waking all 400 tasks to a single cpu. This is because of select_idle_sibling()'s interaction with the new ipi based wakeup scheme. The existing idle_cpu() test only checks to see if the current task on that cpu is the idle task, it does not take already queued tasks into account, nor does it take queued to be woken tasks into account. If the remote wakeup IPIs come hard enough, there won't be time to schedule away from the idle task, and would thus keep thinking the cpu was in fact idle, regardless of the fact that there were already several hundred tasks runnable. We couldn't reproduce on mainline, but there's no reason it couldn't happen. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-3o30p18b2paswpc9ohy2gltp@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Use the generic llist primitives. We had a private lockless list implementation in the scheduler in the wake-list code, now that we have a generic llist implementation that provides all required operations, switch to it. This patch is not expected to change any behavior. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Huang Ying <ying.huang@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1315836353.26517.42.camel@twinsSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 30 9月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
David reported: Attached below is a watered-down version of rt/tst-cpuclock2.c from GLIBC. Just build it with "gcc -o test test.c -lpthread -lrt" or similar. Run it several times, and you will see cases where the main thread will measure a process clock difference before and after the nanosleep which is smaller than the cpu-burner thread's individual thread clock difference. This doesn't make any sense since the cpu-burner thread is part of the top-level process's thread group. I've reproduced this on both x86-64 and sparc64 (using both 32-bit and 64-bit binaries). For example: [davem@boricha build-x86_64-linux]$ ./test process: before(0.001221967) after(0.498624371) diff(497402404) thread: before(0.000081692) after(0.498316431) diff(498234739) self: before(0.001223521) after(0.001240219) diff(16698) [davem@boricha build-x86_64-linux]$ The diff of 'process' should always be >= the diff of 'thread'. I make sure to wrap the 'thread' clock measurements the most tightly around the nanosleep() call, and that the 'process' clock measurements are the outer-most ones. --- #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <time.h> #include <fcntl.h> #include <string.h> #include <errno.h> #include <pthread.h> static pthread_barrier_t barrier; static void *chew_cpu(void *arg) { pthread_barrier_wait(&barrier); while (1) __asm__ __volatile__("" : : : "memory"); return NULL; } int main(void) { clockid_t process_clock, my_thread_clock, th_clock; struct timespec process_before, process_after; struct timespec me_before, me_after; struct timespec th_before, th_after; struct timespec sleeptime; unsigned long diff; pthread_t th; int err; err = clock_getcpuclockid(0, &process_clock); if (err) return 1; err = pthread_getcpuclockid(pthread_self(), &my_thread_clock); if (err) return 1; pthread_barrier_init(&barrier, NULL, 2); err = pthread_create(&th, NULL, chew_cpu, NULL); if (err) return 1; err = pthread_getcpuclockid(th, &th_clock); if (err) return 1; pthread_barrier_wait(&barrier); err = clock_gettime(process_clock, &process_before); if (err) return 1; err = clock_gettime(my_thread_clock, &me_before); if (err) return 1; err = clock_gettime(th_clock, &th_before); if (err) return 1; sleeptime.tv_sec = 0; sleeptime.tv_nsec = 500000000; nanosleep(&sleeptime, NULL); err = clock_gettime(th_clock, &th_after); if (err) return 1; err = clock_gettime(my_thread_clock, &me_after); if (err) return 1; err = clock_gettime(process_clock, &process_after); if (err) return 1; diff = process_after.tv_nsec - process_before.tv_nsec; printf("process: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", process_before.tv_sec, process_before.tv_nsec, process_after.tv_sec, process_after.tv_nsec, diff); diff = th_after.tv_nsec - th_before.tv_nsec; printf("thread: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", th_before.tv_sec, th_before.tv_nsec, th_after.tv_sec, th_after.tv_nsec, diff); diff = me_after.tv_nsec - me_before.tv_nsec; printf("self: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", me_before.tv_sec, me_before.tv_nsec, me_after.tv_sec, me_after.tv_nsec, diff); return 0; } This is due to us using p->se.sum_exec_runtime in thread_group_cputime() where we iterate the thread group and sum all data. This does not take time since the last schedule operation (tick or otherwise) into account. We can cure this by using task_sched_runtime() at the cost of having to take locks. This also means we can (and must) do away with thread_group_sched_runtime() since the modified thread_group_cputime() is now more accurate and would deadlock when called from thread_group_sched_runtime(). Aside of that it makes the function safe on 32 bit systems. The old code added t->se.sum_exec_runtime unprotected. sum_exec_runtime is a 64bit value and could be changed on another cpu at the same time. Reported-by: NDavid Miller <davem@davemloft.net> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: stable@kernel.org Link: http://lkml.kernel.org/r/1314874459.7945.22.camel@twinsTested-by: NDavid Miller <davem@davemloft.net> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 29 9月, 2011 2 次提交
-
-
由 Shi, Alex 提交于
RCU no longer uses this global variable, nor does anyone else. This commit therefore removes this variable. This reduces memory footprint and also removes some atomic instructions and memory barriers from the dyntick-idle path. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
Long ago, using TREE_RCU with PREEMPT would result in "scheduling while atomic" diagnostics if you blocked in an RCU read-side critical section. However, PREEMPT now implies TREE_PREEMPT_RCU, which defeats this diagnostic. This commit therefore adds a replacement diagnostic based on PROVE_RCU. Because rcu_lockdep_assert() and lockdep_rcu_dereference() are now being used for things that have nothing to do with rcu_dereference(), rename lockdep_rcu_dereference() to lockdep_rcu_suspicious() and add a third argument that is a string indicating what is suspicious. This third argument is passed in from a new third argument to rcu_lockdep_assert(). Update all calls to rcu_lockdep_assert() to add an informative third argument. Also, add a pair of rcu_lockdep_assert() calls from within rcu_note_context_switch(), one complaining if a context switch occurs in an RCU-bh read-side critical section and another complaining if a context switch occurs in an RCU-sched read-side critical section. These are present only if the PROVE_RCU kernel parameter is enabled. Finally, fix some checkpatch whitespace complaints in lockdep.c. Again, you must enable PROVE_RCU to see these new diagnostics. But you are enabling PROVE_RCU to check out new RCU uses in any case, aren't you? Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 28 9月, 2011 1 次提交
-
-
由 Joe Perches 提交于
Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 26 9月, 2011 1 次提交
-
-
由 Simon Kirby 提交于
Commit c259e01a ("sched: Separate the scheduler entry for preemption") contained a boo-boo wrecking wchan output. It forgot to put the new schedule() function in the __sched section and thereby doesn't get properly ignored for things like wchan. Tested-by: NSimon Kirby <sim@hostway.ca> Cc: stable@kernel.org # 2.6.39+ Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110923000346.GA25425@hostway.caSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 9月, 2011 1 次提交
-
-
由 Anton Blanchard 提交于
We want to override the default value of SD_NODES_PER_DOMAIN on ppc64, so move it into linux/topology.h. Signed-off-by: NAnton Blanchard <anton@samba.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 08 9月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
David reported: Attached below is a watered-down version of rt/tst-cpuclock2.c from GLIBC. Just build it with "gcc -o test test.c -lpthread -lrt" or similar. Run it several times, and you will see cases where the main thread will measure a process clock difference before and after the nanosleep which is smaller than the cpu-burner thread's individual thread clock difference. This doesn't make any sense since the cpu-burner thread is part of the top-level process's thread group. I've reproduced this on both x86-64 and sparc64 (using both 32-bit and 64-bit binaries). For example: [davem@boricha build-x86_64-linux]$ ./test process: before(0.001221967) after(0.498624371) diff(497402404) thread: before(0.000081692) after(0.498316431) diff(498234739) self: before(0.001223521) after(0.001240219) diff(16698) [davem@boricha build-x86_64-linux]$ The diff of 'process' should always be >= the diff of 'thread'. I make sure to wrap the 'thread' clock measurements the most tightly around the nanosleep() call, and that the 'process' clock measurements are the outer-most ones. --- #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <time.h> #include <fcntl.h> #include <string.h> #include <errno.h> #include <pthread.h> static pthread_barrier_t barrier; static void *chew_cpu(void *arg) { pthread_barrier_wait(&barrier); while (1) __asm__ __volatile__("" : : : "memory"); return NULL; } int main(void) { clockid_t process_clock, my_thread_clock, th_clock; struct timespec process_before, process_after; struct timespec me_before, me_after; struct timespec th_before, th_after; struct timespec sleeptime; unsigned long diff; pthread_t th; int err; err = clock_getcpuclockid(0, &process_clock); if (err) return 1; err = pthread_getcpuclockid(pthread_self(), &my_thread_clock); if (err) return 1; pthread_barrier_init(&barrier, NULL, 2); err = pthread_create(&th, NULL, chew_cpu, NULL); if (err) return 1; err = pthread_getcpuclockid(th, &th_clock); if (err) return 1; pthread_barrier_wait(&barrier); err = clock_gettime(process_clock, &process_before); if (err) return 1; err = clock_gettime(my_thread_clock, &me_before); if (err) return 1; err = clock_gettime(th_clock, &th_before); if (err) return 1; sleeptime.tv_sec = 0; sleeptime.tv_nsec = 500000000; nanosleep(&sleeptime, NULL); err = clock_gettime(th_clock, &th_after); if (err) return 1; err = clock_gettime(my_thread_clock, &me_after); if (err) return 1; err = clock_gettime(process_clock, &process_after); if (err) return 1; diff = process_after.tv_nsec - process_before.tv_nsec; printf("process: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", process_before.tv_sec, process_before.tv_nsec, process_after.tv_sec, process_after.tv_nsec, diff); diff = th_after.tv_nsec - th_before.tv_nsec; printf("thread: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", th_before.tv_sec, th_before.tv_nsec, th_after.tv_sec, th_after.tv_nsec, diff); diff = me_after.tv_nsec - me_before.tv_nsec; printf("self: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", me_before.tv_sec, me_before.tv_nsec, me_after.tv_sec, me_after.tv_nsec, diff); return 0; } This is due to us using p->se.sum_exec_runtime in thread_group_cputime() where we iterate the thread group and sum all data. This does not take time since the last schedule operation (tick or otherwise) into account. We can cure this by using task_sched_runtime() at the cost of having to take locks. This also means we can (and must) do away with thread_group_sched_runtime() since the modified thread_group_cputime() is now more accurate and would deadlock when called from thread_group_sched_runtime(). Reported-by: NDavid Miller <davem@davemloft.net> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1314874459.7945.22.camel@twins Cc: stable@kernel.org Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 29 8月, 2011 2 次提交
-
-
由 Stephane Eranian 提交于
The current cgroup context switch code was incorrect leading to bogus counts. Furthermore, as soon as there was an active cgroup event on a CPU, the context switch cost on that CPU would increase by a significant amount as demonstrated by a simple ping/pong example: $ ./pong Both processes pinned to CPU1, running for 10s 10684.51 ctxsw/s Now start a cgroup perf stat: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 $ ./pong Both processes pinned to CPU1, running for 10s 6674.61 ctxsw/s That's a 37% penalty. Note that pong is not even in the monitored cgroup. The results shown by perf stat are bogus: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 Performance counter stats for 'sleep 100': CPU1 <not counted> cycles test CPU1 16,984,189,138 cycles # 0.000 GHz The second 'cycles' event should report a count @ CPU clock (here 2.4GHz) as it is counting across all cgroups. The patch below fixes the bogus accounting and bypasses any cgroup switches in case the outgoing and incoming tasks are in the same cgroup. With this patch the same test now yields: $ ./pong Both processes pinned to CPU1, running for 10s 10775.30 ctxsw/s Start perf stat with cgroup: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Run pong outside the cgroup: $ /pong Both processes pinned to CPU1, running for 10s 10687.80 ctxsw/s The penalty is now less than 2%. And the results for perf stat are correct: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 <not counted> cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz Now perf stat reports the correct counts for for the non cgroup event. If we run pong inside the cgroup, then we also get the correct counts: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 22,297,726,205 cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz 10.001457237 seconds time elapsed Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110825135803.GA4697@quadSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 WANG Cong 提交于
This patch fixes the following memory leak: unreferenced object 0xffff880107266800 (size 512): comm "sched-powersave", pid 3718, jiffies 4323097853 (age 27495.450s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81133940>] create_object+0x187/0x28b [<ffffffff814ac103>] kmemleak_alloc+0x73/0x98 [<ffffffff811232ba>] __kmalloc_node+0x104/0x159 [<ffffffff81044b98>] kzalloc_node.clone.97+0x15/0x17 [<ffffffff8104cb90>] build_sched_domains+0xb7/0x7f3 [<ffffffff8104d4df>] partition_sched_domains+0x1db/0x24a [<ffffffff8109ee4a>] do_rebuild_sched_domains+0x3b/0x47 [<ffffffff810a00c7>] rebuild_sched_domains+0x10/0x12 [<ffffffff8104d5ba>] sched_power_savings_store+0x6c/0x7b [<ffffffff8104d5df>] sched_mc_power_savings_store+0x16/0x18 [<ffffffff8131322c>] sysdev_class_store+0x20/0x22 [<ffffffff81193876>] sysfs_write_file+0x108/0x144 [<ffffffff81135b10>] vfs_write+0xaf/0x102 [<ffffffff81135d23>] sys_write+0x4d/0x74 [<ffffffff814c8a42>] system_call_fastpath+0x16/0x1b [<ffffffffffffffff>] 0xffffffffffffffff Signed-off-by: NWANG Cong <amwang@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: stable@kernel.org # 3.0 Link: http://lkml.kernel.org/r/1313671017-4112-1-git-send-email-amwang@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-