hugetlb.c 33.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45 46 47 48 49
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
50
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 52 53 54
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
55
			   unsigned long addr, struct vm_area_struct *vma)
56 57 58 59 60 61
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
62
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 64 65
	}
}

L
Linus Torvalds 已提交
66 67 68 69 70 71 72 73
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93
				unsigned long address)
L
Linus Torvalds 已提交
94
{
95
	int nid;
L
Linus Torvalds 已提交
96
	struct page *page = NULL;
97
	struct mempolicy *mpol;
98
	nodemask_t *nodemask;
99
	struct zonelist *zonelist = huge_zonelist(vma, address,
100
					htlb_alloc_mask, &mpol, &nodemask);
101 102
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
103

104 105
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
106 107
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
A
Andrew Morton 已提交
108 109 110 111 112 113
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
114 115
			if (vma && vma->vm_flags & VM_MAYSHARE)
				resv_huge_pages--;
K
Ken Chen 已提交
116
			break;
A
Andrew Morton 已提交
117
		}
L
Linus Torvalds 已提交
118
	}
119
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
120 121 122
	return page;
}

A
Adam Litke 已提交
123 124 125 126 127 128 129 130 131 132 133 134
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
135
	arch_release_hugepage(page);
A
Adam Litke 已提交
136 137 138
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

139 140
static void free_huge_page(struct page *page)
{
141
	int nid = page_to_nid(page);
142
	struct address_space *mapping;
143

144
	mapping = (struct address_space *) page_private(page);
145
	set_page_private(page, 0);
146
	BUG_ON(page_count(page));
147 148 149
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
150 151 152 153 154 155 156
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
157
	spin_unlock(&hugetlb_lock);
158
	if (mapping)
159
		hugetlb_put_quota(mapping, 1);
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

197
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
198 199
{
	struct page *page;
200

201
	page = alloc_pages_node(nid,
202 203
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
204
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
205
	if (page) {
206 207
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
208
			return NULL;
209
		}
210
		set_compound_page_dtor(page, free_huge_page);
211
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
212
		nr_huge_pages++;
213
		nr_huge_pages_node[nid]++;
214
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
215
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
216
	}
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

251 252 253 254 255
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

256
	return ret;
L
Linus Torvalds 已提交
257 258
}

259 260 261 262
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
263
	unsigned int nid;
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

298 299
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
300
					HUGETLB_PAGE_ORDER);
301 302

	spin_lock(&hugetlb_lock);
303
	if (page) {
304 305 306 307 308 309
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
310
		nid = page_to_nid(page);
311
		set_compound_page_dtor(page, free_huge_page);
312 313 314 315 316
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
317
		__count_vm_event(HTLB_BUDDY_PGALLOC);
318 319 320
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
321
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
322
	}
323
	spin_unlock(&hugetlb_lock);
324 325 326 327

	return page;
}

328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
340 341
	if (needed <= 0) {
		resv_huge_pages += delta;
342
		return 0;
343
	}
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
381 382 383
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
384 385
	 */
	needed += allocated;
386
	resv_huge_pages += delta;
387 388
	ret = 0;
free:
389
	/* Free the needed pages to the hugetlb pool */
390
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
391 392
		if ((--needed) < 0)
			break;
393
		list_del(&page->lru);
394 395 396 397 398 399 400 401
		enqueue_huge_page(page);
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
402
			/*
403 404 405
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
406 407 408
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
409
			free_huge_page(page);
410
		}
411
		spin_lock(&hugetlb_lock);
412 413 414 415 416 417 418 419 420 421
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
422
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
423 424 425 426 427
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

428 429 430 431 432 433 434 435
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

436 437 438
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

439 440
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

441
	while (remaining_iterations-- && nr_pages) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
459
			remaining_iterations = num_online_nodes();
460 461 462 463
		}
	}
}

464 465 466

static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
						unsigned long addr)
L
Linus Torvalds 已提交
467
{
468
	struct page *page;
L
Linus Torvalds 已提交
469 470

	spin_lock(&hugetlb_lock);
471
	page = dequeue_huge_page_vma(vma, addr);
L
Linus Torvalds 已提交
472
	spin_unlock(&hugetlb_lock);
473
	return page ? page : ERR_PTR(-VM_FAULT_OOM);
474
}
475

476 477 478 479
static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
						unsigned long addr)
{
	struct page *page = NULL;
480

481 482 483
	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
		return ERR_PTR(-VM_FAULT_SIGBUS);

484 485
	spin_lock(&hugetlb_lock);
	if (free_huge_pages > resv_huge_pages)
486
		page = dequeue_huge_page_vma(vma, addr);
487
	spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
488
	if (!page) {
489
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
490 491 492 493 494 495
		if (!page) {
			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
	return page;
496 497 498 499 500 501
}

static struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr)
{
	struct page *page;
502 503
	struct address_space *mapping = vma->vm_file->f_mapping;

504 505 506 507
	if (vma->vm_flags & VM_MAYSHARE)
		page = alloc_huge_page_shared(vma, addr);
	else
		page = alloc_huge_page_private(vma, addr);
508 509

	if (!IS_ERR(page)) {
510
		set_page_refcounted(page);
511
		set_page_private(page, (unsigned long) mapping);
512 513
	}
	return page;
514 515
}

L
Linus Torvalds 已提交
516 517 518 519
static int __init hugetlb_init(void)
{
	unsigned long i;

520 521 522
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
523 524 525
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

526 527
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
528
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
529
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

546 547 548 549 550 551 552 553 554 555 556
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
557 558 559 560
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
561 562
	int i;

L
Linus Torvalds 已提交
563 564 565
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
566 567
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
568 569 570 571 572
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
573
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

583
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
584 585
static unsigned long set_max_huge_pages(unsigned long count)
{
586
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
587

588 589 590 591
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
592 593 594 595 596 597
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
598
	 */
L
Linus Torvalds 已提交
599
	spin_lock(&hugetlb_lock);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		int ret;
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
626 627 628 629 630 631 632 633
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
634
	 */
635 636
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
637 638
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
639
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
640 641 642 643
		if (!page)
			break;
		update_and_free_page(page);
	}
644 645 646 647 648 649
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
650
	spin_unlock(&hugetlb_lock);
651
	return ret;
L
Linus Torvalds 已提交
652 653 654 655 656 657 658 659 660 661
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
662 663 664 665 666 667 668 669 670 671 672 673 674

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

675 676 677 678 679
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
680 681
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
682 683 684 685
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
686 687 688 689 690 691 692
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
693
			"HugePages_Rsvd:  %5lu\n"
694
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
695 696 697
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
698
			resv_huge_pages,
699
			surplus_huge_pages,
L
Linus Torvalds 已提交
700 701 702 703 704 705 706
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
707 708
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
L
Linus Torvalds 已提交
709
		nid, nr_huge_pages_node[nid],
710 711
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
726
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
727 728
{
	BUG();
N
Nick Piggin 已提交
729
	return 0;
L
Linus Torvalds 已提交
730 731 732
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
733
	.fault = hugetlb_vm_op_fault,
L
Linus Torvalds 已提交
734 735
};

736 737
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
738 739 740
{
	pte_t entry;

741
	if (writable) {
D
David Gibson 已提交
742 743 744
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
745
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
746 747 748 749 750 751 752
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

753 754 755 756 757
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

758 759
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
760 761
		update_mmu_cache(vma, address, entry);
	}
762 763 764
}


D
David Gibson 已提交
765 766 767 768 769
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
770
	unsigned long addr;
771 772 773
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
774

775
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
776 777 778
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
779 780 781
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
782 783 784 785 786

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
787
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
788
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
789
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
790
			if (cow)
791 792
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
793 794 795 796 797
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
798
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
799 800 801 802 803 804 805
	}
	return 0;

nomem:
	return -ENOMEM;
}

806 807
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end)
D
David Gibson 已提交
808 809 810
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
811
	pte_t *ptep;
D
David Gibson 已提交
812 813
	pte_t pte;
	struct page *page;
814
	struct page *tmp;
815 816 817 818 819
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
820
	LIST_HEAD(page_list);
D
David Gibson 已提交
821 822 823 824 825

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

826
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
827
	for (address = start; address < end; address += HPAGE_SIZE) {
828
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
829
		if (!ptep)
830 831
			continue;

832 833 834
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

835
		pte = huge_ptep_get_and_clear(mm, address, ptep);
836
		if (huge_pte_none(pte))
D
David Gibson 已提交
837
			continue;
838

D
David Gibson 已提交
839
		page = pte_page(pte);
840 841
		if (pte_dirty(pte))
			set_page_dirty(page);
842
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
843
	}
L
Linus Torvalds 已提交
844
	spin_unlock(&mm->page_table_lock);
845
	flush_tlb_range(vma, start, end);
846 847 848 849
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
850
}
D
David Gibson 已提交
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end)
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
		__unmap_hugepage_range(vma, start, end);
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

870 871 872 873
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep, pte_t pte)
{
	struct page *old_page, *new_page;
874
	int avoidcopy;
875 876 877 878 879 880 881 882

	old_page = pte_page(pte);

	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
883
		return 0;
884 885 886
	}

	page_cache_get(old_page);
887
	new_page = alloc_huge_page(vma, address);
888

889
	if (IS_ERR(new_page)) {
890
		page_cache_release(old_page);
891
		return -PTR_ERR(new_page);
892 893 894
	}

	spin_unlock(&mm->page_table_lock);
895
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
896
	__SetPageUptodate(new_page);
897 898 899
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
900
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
901
		/* Break COW */
902
		huge_ptep_clear_flush(vma, address, ptep);
903 904 905 906 907 908 909
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
910
	return 0;
911 912
}

913
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
914
			unsigned long address, pte_t *ptep, int write_access)
915 916
{
	int ret = VM_FAULT_SIGBUS;
A
Adam Litke 已提交
917 918 919 920
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
921
	pte_t new_pte;
A
Adam Litke 已提交
922 923 924 925 926 927 928 929 930

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
931 932 933
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
934 935 936
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
937
		page = alloc_huge_page(vma, address);
938 939
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
940 941
			goto out;
		}
942
		clear_huge_page(page, address);
N
Nick Piggin 已提交
943
		__SetPageUptodate(page);
944

945 946
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
947
			struct inode *inode = mapping->host;
948 949 950 951 952 953 954 955

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
956 957 958 959

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
960 961 962
		} else
			lock_page(page);
	}
963

964
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
965 966 967 968
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
969
	ret = 0;
970
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
971 972
		goto backout;

973 974 975 976 977 978 979 980 981
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
	}

982
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
983 984
	unlock_page(page);
out:
985
	return ret;
A
Adam Litke 已提交
986 987 988 989 990 991

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
992 993
}

994 995 996 997 998
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
999
	int ret;
1000
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1001 1002 1003 1004 1005

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

1006 1007 1008 1009 1010 1011
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1012 1013
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1014 1015 1016 1017
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1018

N
Nick Piggin 已提交
1019
	ret = 0;
1020 1021 1022

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1023
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1024 1025 1026
		if (write_access && !pte_write(entry))
			ret = hugetlb_cow(mm, vma, address, ptep, entry);
	spin_unlock(&mm->page_table_lock);
1027
	mutex_unlock(&hugetlb_instantiation_mutex);
1028 1029

	return ret;
1030 1031
}

D
David Gibson 已提交
1032 1033
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1034 1035
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1036
{
1037 1038
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1039 1040
	int remainder = *length;

1041
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1042
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1043 1044
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1045

A
Adam Litke 已提交
1046 1047 1048 1049 1050 1051
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1052

1053 1054
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1055
			int ret;
D
David Gibson 已提交
1056

A
Adam Litke 已提交
1057
			spin_unlock(&mm->page_table_lock);
1058
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1059
			spin_lock(&mm->page_table_lock);
1060
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1061
				continue;
D
David Gibson 已提交
1062

A
Adam Litke 已提交
1063 1064 1065 1066 1067 1068
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1069
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1070
		page = pte_page(huge_ptep_get(pte));
1071
same_page:
1072 1073
		if (pages) {
			get_page(page);
1074
			pages[i] = page + pfn_offset;
1075
		}
D
David Gibson 已提交
1076 1077 1078 1079 1080

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1081
		++pfn_offset;
D
David Gibson 已提交
1082 1083
		--remainder;
		++i;
1084 1085 1086 1087 1088 1089 1090 1091
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1092
	}
1093
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1094 1095 1096 1097 1098
	*length = remainder;
	*position = vaddr;

	return i;
}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1111
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1112 1113 1114 1115 1116
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1117 1118
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1119
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1120 1121 1122 1123 1124 1125
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1126
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1127 1128 1129 1130

	flush_tlb_range(vma, start, end);
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
S
Simon Arlott 已提交
1185
	 * size such that we can guarantee to record the reservation. */
1186 1187
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1188
		if (!nrg)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
1274 1275 1276 1277
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

1278 1279
		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
1280
			goto out;
1281
		}
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

int hugetlb_reserve_pages(struct inode *inode, long from, long to)
{
	long ret, chg;

	chg = region_chg(&inode->i_mapping->private_list, from, to);
	if (chg < 0)
		return chg;
1300

1301 1302
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1303
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1304 1305
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1306
		return ret;
K
Ken Chen 已提交
1307
	}
1308 1309 1310 1311 1312 1313 1314
	region_add(&inode->i_mapping->private_list, from, to);
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1315 1316 1317 1318 1319

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1320 1321
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1322
}