vmalloc.c 67.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23 24 25 26
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
27
#include <linux/pfn.h>
28
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
29
#include <linux/atomic.h>
30
#include <linux/compiler.h>
31
#include <linux/llist.h>
32

L
Linus Torvalds 已提交
33 34
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
35
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
	struct llist_node *llnode = llist_del_all(&p->list);
	while (llnode) {
		void *p = llnode;
		llnode = llist_next(llnode);
		__vunmap(p, 1);
	}
}

N
Nick Piggin 已提交
56
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
57

L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66 67 68
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
69
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

N
Nick Piggin 已提交
83
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

N
Nick Piggin 已提交
97
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
113
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
114 115 116
{
	pte_t *pte;

N
Nick Piggin 已提交
117 118 119 120 121
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
122
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
123 124 125
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
126 127 128 129 130
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
131 132
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
133
		(*nr)++;
L
Linus Torvalds 已提交
134 135 136 137
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
138 139
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
140 141 142 143 144 145 146 147 148
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
149
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
150 151 152 153 154
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
155 156
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
157 158 159 160 161 162 163 164 165
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
166
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
167 168 169 170 171
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
172 173 174 175 176 177
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
178 179
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
180 181 182
{
	pgd_t *pgd;
	unsigned long next;
183
	unsigned long addr = start;
N
Nick Piggin 已提交
184 185
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
186 187 188 189 190

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
N
Nick Piggin 已提交
191
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
192
		if (err)
193
			return err;
L
Linus Torvalds 已提交
194
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
195 196

	return nr;
L
Linus Torvalds 已提交
197 198
}

199 200 201 202 203 204 205 206 207 208
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

209
int is_vmalloc_or_module_addr(const void *x)
210 211
{
	/*
212
	 * ARM, x86-64 and sparc64 put modules in a special place,
213 214 215 216 217 218 219 220 221 222 223
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

224
/*
225
 * Walk a vmap address to the struct page it maps.
226
 */
227
struct page *vmalloc_to_page(const void *vmalloc_addr)
228 229
{
	unsigned long addr = (unsigned long) vmalloc_addr;
230
	struct page *page = NULL;
231 232
	pgd_t *pgd = pgd_offset_k(addr);

233 234 235 236
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
237
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
238

239
	if (!pgd_none(*pgd)) {
N
Nick Piggin 已提交
240
		pud_t *pud = pud_offset(pgd, addr);
241
		if (!pud_none(*pud)) {
N
Nick Piggin 已提交
242
			pmd_t *pmd = pmd_offset(pud, addr);
243
			if (!pmd_none(*pmd)) {
N
Nick Piggin 已提交
244 245
				pte_t *ptep, pte;

246 247 248
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
249
					page = pte_page(pte);
250 251 252 253
				pte_unmap(ptep);
			}
		}
	}
254
	return page;
255
}
256
EXPORT_SYMBOL(vmalloc_to_page);
257 258

/*
259
 * Map a vmalloc()-space virtual address to the physical page frame number.
260
 */
261
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
262
{
263
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
264
}
265
EXPORT_SYMBOL(vmalloc_to_pfn);
266

N
Nick Piggin 已提交
267 268 269 270 271 272 273 274

/*** Global kva allocator ***/

#define VM_LAZY_FREE	0x01
#define VM_LAZY_FREEING	0x02
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
275 276
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
277 278 279 280 281 282 283 284
static struct rb_root vmap_area_root = RB_ROOT;

/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;

285
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
286 287

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
288
{
N
Nick Piggin 已提交
289 290 291 292 293 294 295 296
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
297
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
313
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
314 315

		parent = *p;
316 317
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
318
			p = &(*p)->rb_left;
319
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
320 321 322 323 324 325 326 327
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

328
	/* address-sort this list */
N
Nick Piggin 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
351
	unsigned long addr;
N
Nick Piggin 已提交
352
	int purged = 0;
N
Nick Piggin 已提交
353
	struct vmap_area *first;
N
Nick Piggin 已提交
354

N
Nick Piggin 已提交
355
	BUG_ON(!size);
N
Nick Piggin 已提交
356
	BUG_ON(size & ~PAGE_MASK);
N
Nick Piggin 已提交
357
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
358 359 360 361 362 363

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

364 365 366 367 368 369
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
370 371
retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
396
		addr = ALIGN(first->va_end, align);
N
Nick Piggin 已提交
397 398
		if (addr < vstart)
			goto nocache;
399
		if (addr + size < addr)
N
Nick Piggin 已提交
400 401 402 403
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
404
		if (addr + size < addr)
N
Nick Piggin 已提交
405 406 407 408 409 410
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
N
Nick Piggin 已提交
411 412 413 414
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
N
Nick Piggin 已提交
415 416 417 418
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
N
Nick Piggin 已提交
419
				n = n->rb_right;
N
Nick Piggin 已提交
420
		}
N
Nick Piggin 已提交
421 422 423 424

		if (!first)
			goto found;
	}
N
Nick Piggin 已提交
425 426

	/* from the starting point, walk areas until a suitable hole is found */
427
	while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
428 429
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
430
		addr = ALIGN(first->va_end, align);
431
		if (addr + size < addr)
N
Nick Piggin 已提交
432 433
			goto overflow;

434
		if (list_is_last(&first->list, &vmap_area_list))
N
Nick Piggin 已提交
435
			goto found;
436 437 438

		first = list_entry(first->list.next,
				struct vmap_area, list);
N
Nick Piggin 已提交
439 440
	}

N
Nick Piggin 已提交
441 442 443
found:
	if (addr + size > vend)
		goto overflow;
N
Nick Piggin 已提交
444 445 446 447 448

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
N
Nick Piggin 已提交
449
	free_vmap_cache = &va->rb_node;
N
Nick Piggin 已提交
450 451
	spin_unlock(&vmap_area_lock);

N
Nick Piggin 已提交
452 453 454 455
	BUG_ON(va->va_start & (align-1));
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
456
	return va;
N
Nick Piggin 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
	if (printk_ratelimit())
		printk(KERN_WARNING
			"vmap allocation for size %lu failed: "
			"use vmalloc=<size> to increase size.\n", size);
	kfree(va);
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
471 472 473 474 475
}

static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	if (free_vmap_cache) {
		if (va->va_end < cached_vstart) {
			free_vmap_cache = NULL;
		} else {
			struct vmap_area *cache;
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
			if (va->va_start <= cache->va_start) {
				free_vmap_cache = rb_prev(&va->rb_node);
				/*
				 * We don't try to update cached_hole_size or
				 * cached_align, but it won't go very wrong.
				 */
			}
		}
	}
N
Nick Piggin 已提交
492 493 494 495
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

496 497 498 499 500 501 502 503 504
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

505
	kfree_rcu(va, rcu_head);
N
Nick Piggin 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
	/*
	 * Unmap page tables and force a TLB flush immediately if
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
	 * bugs similarly to those in linear kernel virtual address
	 * space after a page has been freed.
	 *
	 * All the lazy freeing logic is still retained, in order to
	 * minimise intrusiveness of this debugging feature.
	 *
	 * This is going to be *slow* (linear kernel virtual address
	 * debugging doesn't do a broadcast TLB flush so it is a lot
	 * faster).
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	vunmap_page_range(start, end);
	flush_tlb_kernel_range(start, end);
#endif
}

N
Nick Piggin 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

574 575 576
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

577 578 579 580 581 582 583 584 585
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * Purges all lazily-freed vmap areas.
 *
 * If sync is 0 then don't purge if there is already a purge in progress.
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 * their own TLB flushing).
 * Returns with *start = min(*start, lowest purged address)
 *              *end = max(*end, highest purged address)
 */
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
					int sync, int force_flush)
{
599
	static DEFINE_SPINLOCK(purge_lock);
N
Nick Piggin 已提交
600 601
	LIST_HEAD(valist);
	struct vmap_area *va;
602
	struct vmap_area *n_va;
N
Nick Piggin 已提交
603 604 605 606 607 608 609 610
	int nr = 0;

	/*
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
	 * should not expect such behaviour. This just simplifies locking for
	 * the case that isn't actually used at the moment anyway.
	 */
	if (!sync && !force_flush) {
611
		if (!spin_trylock(&purge_lock))
N
Nick Piggin 已提交
612 613
			return;
	} else
614
		spin_lock(&purge_lock);
N
Nick Piggin 已提交
615

616 617 618
	if (sync)
		purge_fragmented_blocks_allcpus();

N
Nick Piggin 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	rcu_read_lock();
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	rcu_read_unlock();

634
	if (nr)
N
Nick Piggin 已提交
635 636 637 638 639 640 641
		atomic_sub(nr, &vmap_lazy_nr);

	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

	if (nr) {
		spin_lock(&vmap_area_lock);
642
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
N
Nick Piggin 已提交
643 644 645
			__free_vmap_area(va);
		spin_unlock(&vmap_area_lock);
	}
646
	spin_unlock(&purge_lock);
N
Nick Piggin 已提交
647 648
}

N
Nick Piggin 已提交
649 650 651 652 653 654 655 656 657 658 659
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

	__purge_vmap_area_lazy(&start, &end, 0, 0);
}

N
Nick Piggin 已提交
660 661 662 663 664 665 666
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

N
Nick Piggin 已提交
667
	__purge_vmap_area_lazy(&start, &end, 1, 0);
N
Nick Piggin 已提交
668 669 670
}

/*
671 672 673
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
674
 */
675
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
676 677 678 679
{
	va->flags |= VM_LAZY_FREE;
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
N
Nick Piggin 已提交
680
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
681 682
}

683 684 685 686 687 688 689 690 691 692
/*
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 * called for the correct range previously.
 */
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
{
	unmap_vmap_area(va);
	free_vmap_area_noflush(va);
}

693 694 695 696 697 698 699 700 701
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
	free_unmap_vmap_area_noflush(va);
}

N
Nick Piggin 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void free_unmap_vmap_area_addr(unsigned long addr)
{
	struct vmap_area *va;

	va = find_vmap_area(addr);
	BUG_ON(!va);
	free_unmap_vmap_area(va);
}


/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
746 747 748 749
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
750 751 752

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

753 754
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
755 756 757 758 759 760 761 762 763 764
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
765 766
	struct list_head free_list;
	struct rcu_head rcu_head;
767
	struct list_head purge;
N
Nick Piggin 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
813
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
814
		kfree(vb);
J
Julia Lawall 已提交
815
		return ERR_CAST(va);
N
Nick Piggin 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

	spin_lock_init(&vb->lock);
	vb->va = va;
	vb->free = VMAP_BBMAP_BITS;
	vb->dirty = 0;
	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
841
	list_add_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
842
	spin_unlock(&vbq->lock);
843
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

	return vb;
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

859
	free_vmap_area_noflush(vb->va);
860
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
905 906 907 908 909 910 911 912 913
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	unsigned long addr = 0;
	unsigned int order;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
914 915 916 917 918 919 920 921
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
922 923 924 925 926 927 928 929 930
	order = get_order(size);

again:
	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
		int i;

		spin_lock(&vb->lock);
931 932 933
		if (vb->free < 1UL << order)
			goto next;

934
		i = VMAP_BBMAP_BITS - vb->free;
935 936 937 938 939 940 941 942 943 944 945 946
		addr = vb->va->va_start + (i << PAGE_SHIFT);
		BUG_ON(addr_to_vb_idx(addr) !=
				addr_to_vb_idx(vb->va->va_start));
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
		spin_unlock(&vb->lock);
		break;
next:
N
Nick Piggin 已提交
947 948
		spin_unlock(&vb->lock);
	}
949

950
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	rcu_read_unlock();

	if (!addr) {
		vb = new_vmap_block(gfp_mask);
		if (IS_ERR(vb))
			return vb;
		goto again;
	}

	return (void *)addr;
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
972 973 974

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
975 976 977 978 979 980 981 982 983 984
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

985 986
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
987
	spin_lock(&vb->lock);
988
	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
989

N
Nick Piggin 已提交
990 991
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
992
		BUG_ON(vb->free);
N
Nick Piggin 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

1018 1019 1020
	if (unlikely(!vmap_initialized))
		return;

N
Nick Piggin 已提交
1021 1022 1023 1024 1025 1026
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027
			int i, j;
N
Nick Piggin 已提交
1028 1029 1030

			spin_lock(&vb->lock);
			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031
			if (i < VMAP_BBMAP_BITS) {
N
Nick Piggin 已提交
1032
				unsigned long s, e;
1033 1034 1035 1036

				j = find_last_bit(vb->dirty_map,
							VMAP_BBMAP_BITS);
				j = j + 1; /* need exclusive index */
N
Nick Piggin 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

				s = vb->va->va_start + (i << PAGE_SHIFT);
				e = vb->va->va_start + (j << PAGE_SHIFT);
				flush = 1;

				if (s < start)
					start = s;
				if (e > end)
					end = e;
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

	__purge_vmap_area_lazy(&start, &end, 1, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr = (unsigned long)mem;

	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
	BUG_ON(addr & (PAGE_SIZE-1));

	debug_check_no_locks_freed(mem, size);
1072
	vmap_debug_free_range(addr, addr+size);
N
Nick Piggin 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	if (likely(count <= VMAP_MAX_ALLOC))
		vb_free(mem, size);
	else
		free_unmap_vmap_area_addr(addr);
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 1088
 *
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1119
static struct vm_struct *vmlist __initdata;
N
Nicolas Pitre 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1146 1147 1148
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1149
 * @align: requested alignment
1150 1151 1152 1153 1154 1155 1156 1157
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1158
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1159 1160
{
	static size_t vm_init_off __initdata;
1161 1162 1163 1164
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1165

1166
	vm->addr = (void *)addr;
1167

N
Nicolas Pitre 已提交
1168
	vm_area_add_early(vm);
1169 1170
}

N
Nick Piggin 已提交
1171 1172
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1173 1174
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1175 1176 1177 1178
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1179
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1180 1181 1182 1183

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1184 1185 1186
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1187
	}
1188

I
Ivan Kokshaysky 已提交
1189 1190
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1191
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1192
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1193 1194
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1195
		va->vm = tmp;
I
Ivan Kokshaysky 已提交
1196 1197
		__insert_vmap_area(va);
	}
1198 1199 1200

	vmap_area_pcpu_hole = VMALLOC_END;

1201
	vmap_initialized = true;
N
Nick Piggin 已提交
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1247
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1248 1249 1250 1251 1252 1253 1254 1255 1256

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1257 1258 1259
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1260 1261

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1262 1263 1264 1265 1266 1267 1268
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}

int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
	unsigned long addr = (unsigned long)area->addr;
1269
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	int err;

	err = vmap_page_range(addr, end, prot, *pages);
	if (err > 0) {
		*pages += err;
		err = 0;
	}

	return err;
}
EXPORT_SYMBOL_GPL(map_vm_area);

1282
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1283
			      unsigned long flags, const void *caller)
1284
{
1285
	spin_lock(&vmap_area_lock);
1286 1287 1288 1289
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1290
	va->vm = vm;
1291
	va->flags |= VM_VM_AREA;
1292
	spin_unlock(&vmap_area_lock);
1293
}
1294

1295
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1296
{
1297
	/*
1298
	 * Before removing VM_UNINITIALIZED,
1299 1300 1301 1302
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1303
	vm->flags &= ~VM_UNINITIALIZED;
1304 1305
}

N
Nick Piggin 已提交
1306
static struct vm_struct *__get_vm_area_node(unsigned long size,
1307
		unsigned long align, unsigned long flags, unsigned long start,
1308
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1309
{
1310
	struct vmap_area *va;
N
Nick Piggin 已提交
1311
	struct vm_struct *area;
L
Linus Torvalds 已提交
1312

1313
	BUG_ON(in_interrupt());
1314 1315
	if (flags & VM_IOREMAP)
		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
N
Nick Piggin 已提交
1316

L
Linus Torvalds 已提交
1317
	size = PAGE_ALIGN(size);
1318 1319
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1320

1321
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326 1327 1328 1329
	if (unlikely(!area))
		return NULL;

	/*
	 * We always allocate a guard page.
	 */
	size += PAGE_SIZE;

N
Nick Piggin 已提交
1330 1331 1332 1333
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1334 1335
	}

1336
	setup_vmalloc_vm(area, va, flags, caller);
1337

L
Linus Torvalds 已提交
1338 1339 1340
	return area;
}

C
Christoph Lameter 已提交
1341 1342 1343
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
1344 1345
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
1346
}
1347
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1348

1349 1350
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
1351
				       const void *caller)
1352
{
D
David Rientjes 已提交
1353 1354
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
1355 1356
}

L
Linus Torvalds 已提交
1357
/**
S
Simon Arlott 已提交
1358
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1368
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1369 1370
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
1371 1372 1373
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1374
				const void *caller)
1375
{
1376
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1377
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 *	find_vm_area  -  find a continuous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and return it.
 *	It is up to the caller to do all required locking to keep the returned
 *	pointer valid.
 */
struct vm_struct *find_vm_area(const void *addr)
1389
{
N
Nick Piggin 已提交
1390
	struct vmap_area *va;
1391

N
Nick Piggin 已提交
1392 1393
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
1394
		return va->vm;
L
Linus Torvalds 已提交
1395 1396 1397 1398

	return NULL;
}

1399
/**
S
Simon Arlott 已提交
1400
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1401 1402 1403 1404 1405 1406
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1407
struct vm_struct *remove_vm_area(const void *addr)
1408
{
N
Nick Piggin 已提交
1409 1410 1411 1412
	struct vmap_area *va;

	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
1413
		struct vm_struct *vm = va->vm;
1414

1415 1416 1417 1418 1419
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
		spin_unlock(&vmap_area_lock);

1420 1421 1422 1423
		vmap_debug_free_range(va->va_start, va->va_end);
		free_unmap_vmap_area(va);
		vm->size -= PAGE_SIZE;

N
Nick Piggin 已提交
1424 1425 1426
		return vm;
	}
	return NULL;
1427 1428
}

1429
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1430 1431 1432 1433 1434 1435
{
	struct vm_struct *area;

	if (!addr)
		return;

1436
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
1437
			addr))
L
Linus Torvalds 已提交
1438 1439 1440 1441
		return;

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
1442
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1443 1444 1445 1446
				addr);
		return;
	}

1447
	debug_check_no_locks_freed(addr, area->size);
1448
	debug_check_no_obj_freed(addr, area->size);
1449

L
Linus Torvalds 已提交
1450 1451 1452 1453
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1454 1455 1456 1457
			struct page *page = area->pages[i];

			BUG_ON(!page);
			__free_page(page);
L
Linus Torvalds 已提交
1458 1459
		}

1460
		if (area->flags & VM_VPAGES)
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467 1468
			vfree(area->pages);
		else
			kfree(area->pages);
	}

	kfree(area);
	return;
}
1469
 
L
Linus Torvalds 已提交
1470 1471 1472 1473
/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1474
 *	Free the virtually continuous memory area starting at @addr, as
1475 1476
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1477
 *
1478 1479 1480
 *	Must not be called in NMI context (strictly speaking, only if we don't
 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 *	conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
1481 1482
 *
 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
1483
 */
1484
void vfree(const void *addr)
L
Linus Torvalds 已提交
1485
{
1486
	BUG_ON(in_nmi());
1487 1488 1489

	kmemleak_free(addr);

1490 1491 1492 1493
	if (!addr)
		return;
	if (unlikely(in_interrupt())) {
		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1494 1495
		if (llist_add((struct llist_node *)addr, &p->list))
			schedule_work(&p->wq);
1496 1497
	} else
		__vunmap(addr, 1);
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1508
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1509
 */
1510
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1511 1512
{
	BUG_ON(in_interrupt());
1513
	might_sleep();
1514 1515
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

1534 1535
	might_sleep();

1536
	if (count > totalram_pages)
L
Linus Torvalds 已提交
1537 1538
		return NULL;

1539 1540
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
					__builtin_return_address(0));
L
Linus Torvalds 已提交
1541 1542
	if (!area)
		return NULL;
1543

L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (map_vm_area(area, prot, &pages)) {
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1553 1554
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1555
			    int node, const void *caller);
A
Adrian Bunk 已提交
1556
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1557
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
1558
{
1559
	const int order = 0;
L
Linus Torvalds 已提交
1560 1561
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1562
	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
L
Linus Torvalds 已提交
1563

1564
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1565 1566 1567 1568
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1569
	if (array_size > PAGE_SIZE) {
1570
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1571
				PAGE_KERNEL, node, area->caller);
1572
		area->flags |= VM_VPAGES;
1573
	} else {
1574
		pages = kmalloc_node(array_size, nested_gfp, node);
1575
	}
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582 1583
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1584
		struct page *page;
1585
		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1586

J
Jianguo Wu 已提交
1587
		if (node == NUMA_NO_NODE)
1588
			page = alloc_page(tmp_mask);
C
Christoph Lameter 已提交
1589
		else
1590
			page = alloc_pages_node(node, tmp_mask, order);
1591 1592

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1593 1594 1595 1596
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1597
		area->pages[i] = page;
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604
	}

	if (map_vm_area(area, prot, &pages))
		goto fail;
	return area->addr;

fail:
J
Joe Perches 已提交
1605 1606
	warn_alloc_failed(gfp_mask, order,
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1607
			  (area->nr_pages*PAGE_SIZE), area->size);
L
Linus Torvalds 已提交
1608 1609 1610 1611 1612
	vfree(area->addr);
	return NULL;
}

/**
1613
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1614
 *	@size:		allocation size
1615
 *	@align:		desired alignment
1616 1617
 *	@start:		vm area range start
 *	@end:		vm area range end
L
Linus Torvalds 已提交
1618 1619
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1620
 *	@node:		node to use for allocation or NUMA_NO_NODE
1621
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1627 1628
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
1629
			pgprot_t prot, int node, const void *caller)
L
Linus Torvalds 已提交
1630 1631
{
	struct vm_struct *area;
1632 1633
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1634 1635

	size = PAGE_ALIGN(size);
1636
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1637
		goto fail;
L
Linus Torvalds 已提交
1638

1639
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1640
				  start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
1641
	if (!area)
1642
		goto fail;
L
Linus Torvalds 已提交
1643

1644
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1645
	if (!addr)
1646
		return NULL;
1647

1648
	/*
1649 1650
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
1651
	 * Now, it is fully initialized, so remove this flag here.
1652
	 */
1653
	clear_vm_uninitialized_flag(area);
1654

1655
	/*
1656 1657 1658
	 * A ref_count = 2 is needed because vm_struct allocated in
	 * __get_vm_area_node() contains a reference to the virtual address of
	 * the vmalloc'ed block.
1659
	 */
1660
	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1661 1662

	return addr;
1663 1664 1665 1666 1667 1668

fail:
	warn_alloc_failed(gfp_mask, 0,
			  "vmalloc: allocation failure: %lu bytes\n",
			  real_size);
	return NULL;
L
Linus Torvalds 已提交
1669 1670
}

1671 1672 1673 1674 1675 1676
/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@align:		desired alignment
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1677
 *	@node:		node to use for allocation or NUMA_NO_NODE
1678 1679 1680 1681 1682 1683 1684 1685
 *	@caller:	caller's return address
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1686
			    int node, const void *caller)
1687 1688 1689 1690 1691
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
				gfp_mask, prot, node, caller);
}

C
Christoph Lameter 已提交
1692 1693
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
1694
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1695
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1696
}
L
Linus Torvalds 已提交
1697 1698
EXPORT_SYMBOL(__vmalloc);

1699 1700 1701 1702 1703 1704 1705
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}

L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1712
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1713 1714 1715 1716
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
1717 1718
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
				    GFP_KERNEL | __GFP_HIGHMEM);
L
Linus Torvalds 已提交
1719 1720 1721
}
EXPORT_SYMBOL(vmalloc);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/**
 *	vzalloc - allocate virtually contiguous memory with zero fill
 *	@size:	allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *	The memory allocated is set to zero.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
1734
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1735 1736 1737 1738
				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);

1739
/**
1740 1741
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1742
 *
1743 1744
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1745 1746 1747 1748 1749 1750
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1751 1752
	ret = __vmalloc_node(size, SHMLBA,
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
D
David Rientjes 已提交
1753 1754
			     PAGE_KERNEL, NUMA_NO_NODE,
			     __builtin_return_address(0));
1755
	if (ret) {
N
Nick Piggin 已提交
1756
		area = find_vm_area(ret);
1757 1758
		area->flags |= VM_USERMAP;
	}
1759 1760 1761 1762
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1763 1764 1765
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1766
 *	@node:		numa node
C
Christoph Lameter 已提交
1767 1768 1769 1770
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1771
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1772 1773 1774 1775
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1776
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1777
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1778 1779 1780
}
EXPORT_SYMBOL(vmalloc_node);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc_node);

1800 1801 1802 1803
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1812
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1818
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
D
David Rientjes 已提交
1819
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1820 1821
}

1822
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1823
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1824
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1825
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1826 1827 1828 1829
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1839
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
1840
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1841 1842 1843
}
EXPORT_SYMBOL(vmalloc_32);

1844
/**
1845
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1846
 *	@size:		allocation size
1847 1848 1849
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1850 1851 1852 1853 1854 1855
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1856
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
D
David Rientjes 已提交
1857
			     NUMA_NO_NODE, __builtin_return_address(0));
1858
	if (ret) {
N
Nick Piggin 已提交
1859
		area = find_vm_area(ret);
1860 1861
		area->flags |= VM_USERMAP;
	}
1862 1863 1864 1865
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1896
			void *map = kmap_atomic(p);
1897
			memcpy(buf, map + offset, length);
1898
			kunmap_atomic(map);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1935
			void *map = kmap_atomic(p);
1936
			memcpy(map + offset, buf, length);
1937
			kunmap_atomic(map);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
1964
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1965 1966 1967 1968 1969 1970 1971 1972
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
1973 1974
long vread(char *buf, char *addr, unsigned long count)
{
1975 1976
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
1977
	char *vaddr, *buf_start = buf;
1978
	unsigned long buflen = count;
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
1995
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2005
		n = vaddr + get_vm_area_size(vm) - addr;
2006 2007
		if (n > count)
			n = count;
2008
		if (!(vm->flags & VM_IOREMAP))
2009 2010 2011 2012 2013 2014
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2015 2016
	}
finished:
2017
	spin_unlock(&vmap_area_lock);
2018 2019 2020 2021 2022 2023 2024 2025

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2026 2027
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2046
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2047 2048 2049 2050 2051 2052 2053
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 */

L
Linus Torvalds 已提交
2054 2055
long vwrite(char *buf, char *addr, unsigned long count)
{
2056 2057
	struct vmap_area *va;
	struct vm_struct *vm;
2058 2059 2060
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2061 2062 2063 2064

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2065
	buflen = count;
L
Linus Torvalds 已提交
2066

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2077
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083 2084 2085
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2086
		n = vaddr + get_vm_area_size(vm) - addr;
2087 2088
		if (n > count)
			n = count;
2089
		if (!(vm->flags & VM_IOREMAP)) {
2090 2091 2092 2093 2094 2095
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2096 2097
	}
finished:
2098
	spin_unlock(&vmap_area_lock);
2099 2100 2101
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2102
}
2103 2104

/**
2105 2106 2107 2108 2109
 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
 *	@vma:		vma to cover
 *	@uaddr:		target user address to start at
 *	@kaddr:		virtual address of vmalloc kernel memory
 *	@size:		size of map area
2110 2111
 *
 *	Returns:	0 for success, -Exxx on failure
2112
 *
2113 2114 2115 2116
 *	This function checks that @kaddr is a valid vmalloc'ed area,
 *	and that it is big enough to cover the range starting at
 *	@uaddr in @vma. Will return failure if that criteria isn't
 *	met.
2117
 *
2118
 *	Similar to remap_pfn_range() (see mm/memory.c)
2119
 */
2120 2121
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2122 2123 2124
{
	struct vm_struct *area;

2125 2126 2127
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2128 2129
		return -EINVAL;

2130
	area = find_vm_area(kaddr);
2131
	if (!area)
N
Nick Piggin 已提交
2132
		return -EINVAL;
2133 2134

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2135
		return -EINVAL;
2136

2137
	if (kaddr + size > area->addr + area->size)
N
Nick Piggin 已提交
2138
		return -EINVAL;
2139 2140

	do {
2141
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2142 2143
		int ret;

2144 2145 2146 2147 2148
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2149 2150 2151
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2152

2153
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2154

N
Nick Piggin 已提交
2155
	return 0;
2156
}
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *
 *	Returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2180 2181
EXPORT_SYMBOL(remap_vmalloc_range);

2182 2183 2184 2185
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
2186
void __weak vmalloc_sync_all(void)
2187 2188
{
}
2189 2190


2191
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2192
{
2193 2194 2195 2196 2197 2198
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
2199 2200 2201 2202 2203 2204
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2205
 *	@ptes:		returns the PTEs for the address space
2206 2207
 *
 *	Returns:	NULL on failure, vm_struct on success
2208 2209 2210
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
2211 2212 2213 2214
 *	are created.
 *
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 *	allocated for the VM area are returned.
2215
 */
2216
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2217 2218 2219
{
	struct vm_struct *area;

2220 2221
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2222 2223 2224 2225 2226 2227 2228 2229
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2230
				size, f, ptes ? &ptes : NULL)) {
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2247

2248
#ifdef CONFIG_SMP
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static struct vmap_area *node_to_va(struct rb_node *n)
{
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
2344 2345 2346 2347
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
 * necessary data structres are inserted and the result is returned.
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
2358
				     size_t align)
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	/* verify parameters and allocate data structures */
	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

		for (area2 = 0; area2 < nr_vms; area2++) {
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

			if (area2 == area)
				continue;

			BUG_ON(start2 >= start && start2 < end);
			BUG_ON(end2 <= end && end2 > start);
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

2400 2401
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2402
	if (!vas || !vms)
2403
		goto err_free2;
2404 2405

	for (area = 0; area < nr_vms; area++) {
2406 2407
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
2493 2494
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
2495 2496 2497 2498 2499 2500

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
2501 2502
		kfree(vas[area]);
		kfree(vms[area]);
2503
	}
2504
err_free2:
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2525
#endif	/* CONFIG_SMP */
2526 2527 2528

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2529
	__acquires(&vmap_area_lock)
2530 2531
{
	loff_t n = *pos;
2532
	struct vmap_area *va;
2533

2534 2535 2536
	spin_lock(&vmap_area_lock);
	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
	while (n > 0 && &va->list != &vmap_area_list) {
2537
		n--;
2538
		va = list_entry(va->list.next, typeof(*va), list);
2539
	}
2540 2541
	if (!n && &va->list != &vmap_area_list)
		return va;
2542 2543 2544 2545 2546 2547 2548

	return NULL;

}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
2549
	struct vmap_area *va = p, *next;
2550 2551

	++*pos;
2552 2553 2554 2555 2556
	next = list_entry(va->list.next, typeof(*va), list);
	if (&next->list != &vmap_area_list)
		return next;

	return NULL;
2557 2558 2559
}

static void s_stop(struct seq_file *m, void *p)
2560
	__releases(&vmap_area_lock)
2561
{
2562
	spin_unlock(&vmap_area_lock);
2563 2564
}

E
Eric Dumazet 已提交
2565 2566
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
2567
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
2568 2569 2570 2571 2572
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

2573 2574 2575 2576 2577
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
		if (v->flags & VM_UNINITIALIZED)
			return;

E
Eric Dumazet 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2589 2590
static int s_show(struct seq_file *m, void *p)
{
2591 2592 2593
	struct vmap_area *va = p;
	struct vm_struct *v;

2594 2595 2596 2597 2598
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
	if (!(va->flags & VM_VM_AREA))
2599 2600 2601
		return 0;

	v = va->vm;
2602

K
Kees Cook 已提交
2603
	seq_printf(m, "0x%pK-0x%pK %7ld",
2604 2605
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
2606 2607
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
2608

2609 2610 2611 2612
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2613
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

	if (v->flags & VM_IOREMAP)
		seq_printf(m, " ioremap");

	if (v->flags & VM_ALLOC)
		seq_printf(m, " vmalloc");

	if (v->flags & VM_MAP)
		seq_printf(m, " vmap");

	if (v->flags & VM_USERMAP)
		seq_printf(m, " user");

	if (v->flags & VM_VPAGES)
		seq_printf(m, " vpages");

E
Eric Dumazet 已提交
2630
	show_numa_info(m, v);
2631 2632 2633 2634
	seq_putc(m, '\n');
	return 0;
}

2635
static const struct seq_operations vmalloc_op = {
2636 2637 2638 2639 2640
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2641 2642 2643 2644 2645 2646

static int vmalloc_open(struct inode *inode, struct file *file)
{
	unsigned int *ptr = NULL;
	int ret;

2647
	if (IS_ENABLED(CONFIG_NUMA)) {
2648
		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2649 2650 2651
		if (ptr == NULL)
			return -ENOMEM;
	}
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	ret = seq_open(file, &vmalloc_op);
	if (!ret) {
		struct seq_file *m = file->private_data;
		m->private = ptr;
	} else
		kfree(ptr);
	return ret;
}

static const struct file_operations proc_vmalloc_operations = {
	.open		= vmalloc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};

static int __init proc_vmalloc_init(void)
{
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
	return 0;
}
module_init(proc_vmalloc_init);
2674 2675 2676

void get_vmalloc_info(struct vmalloc_info *vmi)
{
2677
	struct vmap_area *va;
2678 2679 2680 2681
	unsigned long free_area_size;
	unsigned long prev_end;

	vmi->used = 0;
2682
	vmi->largest_chunk = 0;
2683

2684
	prev_end = VMALLOC_START;
2685

2686
	spin_lock(&vmap_area_lock);
2687

2688 2689 2690 2691
	if (list_empty(&vmap_area_list)) {
		vmi->largest_chunk = VMALLOC_TOTAL;
		goto out;
	}
2692

2693 2694
	list_for_each_entry(va, &vmap_area_list, list) {
		unsigned long addr = va->va_start;
2695

2696 2697 2698 2699 2700 2701 2702
		/*
		 * Some archs keep another range for modules in vmalloc space
		 */
		if (addr < VMALLOC_START)
			continue;
		if (addr >= VMALLOC_END)
			break;
2703

2704 2705
		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
			continue;
2706

2707
		vmi->used += (va->va_end - va->va_start);
2708

2709 2710 2711
		free_area_size = addr - prev_end;
		if (vmi->largest_chunk < free_area_size)
			vmi->largest_chunk = free_area_size;
2712

2713
		prev_end = va->va_end;
2714
	}
2715 2716 2717 2718 2719 2720

	if (VMALLOC_END - prev_end > vmi->largest_chunk)
		vmi->largest_chunk = VMALLOC_END - prev_end;

out:
	spin_unlock(&vmap_area_lock);
2721
}
2722 2723
#endif