vmalloc.c 61.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23 24 25 26
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
27
#include <linux/pfn.h>
28
#include <linux/kmemleak.h>
N
Nick Piggin 已提交
29
#include <asm/atomic.h>
L
Linus Torvalds 已提交
30 31
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
32
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
33

34
bool vmap_lazy_unmap __read_mostly = true;
L
Linus Torvalds 已提交
35

N
Nick Piggin 已提交
36
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
37

L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45 46 47 48
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
49
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

N
Nick Piggin 已提交
63
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

N
Nick Piggin 已提交
77
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
93
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
94 95 96
{
	pte_t *pte;

N
Nick Piggin 已提交
97 98 99 100 101
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
102
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
103 104 105
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
106 107 108 109 110
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
111 112
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
113
		(*nr)++;
L
Linus Torvalds 已提交
114 115 116 117
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
118 119
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
129
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
130 131 132 133 134
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
135 136
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
137 138 139 140 141 142 143 144 145
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
146
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
147 148 149 150 151
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
152 153 154 155 156 157
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
158 159
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
160 161 162
{
	pgd_t *pgd;
	unsigned long next;
163
	unsigned long addr = start;
N
Nick Piggin 已提交
164 165
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
166 167 168 169 170

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
N
Nick Piggin 已提交
171
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
172
		if (err)
173
			return err;
L
Linus Torvalds 已提交
174
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
175 176

	return nr;
L
Linus Torvalds 已提交
177 178
}

179 180 181 182 183 184 185 186 187 188
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

189
int is_vmalloc_or_module_addr(const void *x)
190 191
{
	/*
192
	 * ARM, x86-64 and sparc64 put modules in a special place,
193 194 195 196 197 198 199 200 201 202 203
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

204
/*
N
Nick Piggin 已提交
205
 * Walk a vmap address to the struct page it maps.
206
 */
207
struct page *vmalloc_to_page(const void *vmalloc_addr)
208 209 210 211 212
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);

213 214 215 216
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
217
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
218

219
	if (!pgd_none(*pgd)) {
N
Nick Piggin 已提交
220
		pud_t *pud = pud_offset(pgd, addr);
221
		if (!pud_none(*pud)) {
N
Nick Piggin 已提交
222
			pmd_t *pmd = pmd_offset(pud, addr);
223
			if (!pmd_none(*pmd)) {
N
Nick Piggin 已提交
224 225
				pte_t *ptep, pte;

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}
EXPORT_SYMBOL(vmalloc_to_page);

/*
 * Map a vmalloc()-space virtual address to the physical page frame number.
 */
241
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 243 244 245 246
{
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);

N
Nick Piggin 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

/*** Global kva allocator ***/

#define VM_LAZY_FREE	0x01
#define VM_LAZY_FREEING	0x02
#define VM_VM_AREA	0x04

struct vmap_area {
	unsigned long va_start;
	unsigned long va_end;
	unsigned long flags;
	struct rb_node rb_node;		/* address sorted rbtree */
	struct list_head list;		/* address sorted list */
	struct list_head purge_list;	/* "lazy purge" list */
	void *private;
	struct rcu_head rcu_head;
};

static DEFINE_SPINLOCK(vmap_area_lock);
static struct rb_root vmap_area_root = RB_ROOT;
static LIST_HEAD(vmap_area_list);
268
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
269 270

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
271
{
N
Nick Piggin 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
		else if (addr > va->va_start)
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
296
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
297 298

		parent = *p;
299 300
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
301
			p = &(*p)->rb_left;
302
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

	/* address-sort this list so it is usable like the vmlist */
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
334
	unsigned long addr;
N
Nick Piggin 已提交
335 336
	int purged = 0;

N
Nick Piggin 已提交
337
	BUG_ON(!size);
N
Nick Piggin 已提交
338 339 340 341 342 343 344 345
	BUG_ON(size & ~PAGE_MASK);

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

retry:
G
Glauber Costa 已提交
346 347
	addr = ALIGN(vstart, align);

N
Nick Piggin 已提交
348
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
349 350 351
	if (addr + size - 1 < addr)
		goto overflow;

N
Nick Piggin 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	/* XXX: could have a last_hole cache */
	n = vmap_area_root.rb_node;
	if (n) {
		struct vmap_area *first = NULL;

		do {
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				if (!first && tmp->va_start < addr + size)
					first = tmp;
				n = n->rb_left;
			} else {
				first = tmp;
				n = n->rb_right;
			}
		} while (n);

		if (!first)
			goto found;

		if (first->va_end < addr) {
			n = rb_next(&first->rb_node);
			if (n)
				first = rb_entry(n, struct vmap_area, rb_node);
			else
				goto found;
		}

N
Nick Piggin 已提交
381
		while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
382
			addr = ALIGN(first->va_end + PAGE_SIZE, align);
N
Nick Piggin 已提交
383 384
			if (addr + size - 1 < addr)
				goto overflow;
N
Nick Piggin 已提交
385 386 387 388 389 390 391 392 393 394

			n = rb_next(&first->rb_node);
			if (n)
				first = rb_entry(n, struct vmap_area, rb_node);
			else
				goto found;
		}
	}
found:
	if (addr + size > vend) {
N
Nick Piggin 已提交
395
overflow:
N
Nick Piggin 已提交
396 397 398 399 400 401 402
		spin_unlock(&vmap_area_lock);
		if (!purged) {
			purge_vmap_area_lazy();
			purged = 1;
			goto retry;
		}
		if (printk_ratelimit())
G
Glauber Costa 已提交
403 404 405
			printk(KERN_WARNING
				"vmap allocation for size %lu failed: "
				"use vmalloc=<size> to increase size.\n", size);
406
		kfree(va);
N
Nick Piggin 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		return ERR_PTR(-EBUSY);
	}

	BUG_ON(addr & (align-1));

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void rcu_free_va(struct rcu_head *head)
{
	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);

	kfree(va);
}

static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

435 436 437 438 439 440 441 442 443
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

N
Nick Piggin 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	call_rcu(&va->rcu_head, rcu_free_va);
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
	/*
	 * Unmap page tables and force a TLB flush immediately if
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
	 * bugs similarly to those in linear kernel virtual address
	 * space after a page has been freed.
	 *
	 * All the lazy freeing logic is still retained, in order to
	 * minimise intrusiveness of this debugging feature.
	 *
	 * This is going to be *slow* (linear kernel virtual address
	 * debugging doesn't do a broadcast TLB flush so it is a lot
	 * faster).
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	vunmap_page_range(start, end);
	flush_tlb_kernel_range(start, end);
#endif
}

N
Nick Piggin 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

506 507 508
	if (!vmap_lazy_unmap)
		return 0;

N
Nick Piggin 已提交
509 510 511 512 513 514 515
	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

516 517 518
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

519 520 521 522 523 524 525 526 527
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * Purges all lazily-freed vmap areas.
 *
 * If sync is 0 then don't purge if there is already a purge in progress.
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 * their own TLB flushing).
 * Returns with *start = min(*start, lowest purged address)
 *              *end = max(*end, highest purged address)
 */
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
					int sync, int force_flush)
{
541
	static DEFINE_SPINLOCK(purge_lock);
N
Nick Piggin 已提交
542 543
	LIST_HEAD(valist);
	struct vmap_area *va;
544
	struct vmap_area *n_va;
N
Nick Piggin 已提交
545 546 547 548 549 550 551 552
	int nr = 0;

	/*
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
	 * should not expect such behaviour. This just simplifies locking for
	 * the case that isn't actually used at the moment anyway.
	 */
	if (!sync && !force_flush) {
553
		if (!spin_trylock(&purge_lock))
N
Nick Piggin 已提交
554 555
			return;
	} else
556
		spin_lock(&purge_lock);
N
Nick Piggin 已提交
557

558 559 560
	if (sync)
		purge_fragmented_blocks_allcpus();

N
Nick Piggin 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	rcu_read_lock();
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			unmap_vmap_area(va);
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	rcu_read_unlock();

577
	if (nr)
N
Nick Piggin 已提交
578 579 580 581 582 583 584
		atomic_sub(nr, &vmap_lazy_nr);

	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

	if (nr) {
		spin_lock(&vmap_area_lock);
585
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
N
Nick Piggin 已提交
586 587 588
			__free_vmap_area(va);
		spin_unlock(&vmap_area_lock);
	}
589
	spin_unlock(&purge_lock);
N
Nick Piggin 已提交
590 591
}

N
Nick Piggin 已提交
592 593 594 595 596 597 598 599 600 601 602
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

	__purge_vmap_area_lazy(&start, &end, 0, 0);
}

N
Nick Piggin 已提交
603 604 605 606 607 608 609
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

N
Nick Piggin 已提交
610
	__purge_vmap_area_lazy(&start, &end, 1, 0);
N
Nick Piggin 已提交
611 612 613
}

/*
614 615
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 * called for the correct range previously.
N
Nick Piggin 已提交
616
 */
617
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
618 619 620 621
{
	va->flags |= VM_LAZY_FREE;
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
N
Nick Piggin 已提交
622
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
623 624
}

625 626 627 628 629 630 631 632 633
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
	free_unmap_vmap_area_noflush(va);
}

N
Nick Piggin 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void free_unmap_vmap_area_addr(unsigned long addr)
{
	struct vmap_area *va;

	va = find_vmap_area(addr);
	BUG_ON(!va);
	free_unmap_vmap_area(va);
}


/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
#define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
						VMALLOC_PAGES / NR_CPUS / 16))

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

684 685
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
686 687 688 689 690 691 692 693 694 695 696 697
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	struct vmap_block_queue *vbq;
	unsigned long free, dirty;
	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
698 699
	struct list_head free_list;
	struct rcu_head rcu_head;
700
	struct list_head purge;
N
Nick Piggin 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
	if (unlikely(IS_ERR(va))) {
		kfree(vb);
J
Julia Lawall 已提交
748
		return ERR_CAST(va);
N
Nick Piggin 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

	spin_lock_init(&vb->lock);
	vb->va = va;
	vb->free = VMAP_BBMAP_BITS;
	vb->dirty = 0;
	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	vb->vbq = vbq;
	spin_lock(&vbq->lock);
776
	list_add_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
777
	spin_unlock(&vbq->lock);
778
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	return vb;
}

static void rcu_free_vb(struct rcu_head *head)
{
	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);

	kfree(vb);
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

801
	free_unmap_vmap_area_noflush(vb->va);
N
Nick Piggin 已提交
802 803 804
	call_rcu(&vb->rcu_head, rcu_free_vb);
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_thiscpu(void)
{
	purge_fragmented_blocks(smp_processor_id());
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
853 854 855 856 857 858
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	unsigned long addr = 0;
	unsigned int order;
859
	int purge = 0;
N
Nick Piggin 已提交
860 861 862 863 864 865 866 867 868 869 870 871

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
	order = get_order(size);

again:
	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
		int i;

		spin_lock(&vb->lock);
872 873 874
		if (vb->free < 1UL << order)
			goto next;

N
Nick Piggin 已提交
875 876 877
		i = bitmap_find_free_region(vb->alloc_map,
						VMAP_BBMAP_BITS, order);

878 879 880 881 882
		if (i < 0) {
			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
				/* fragmented and no outstanding allocations */
				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
				purge = 1;
N
Nick Piggin 已提交
883
			}
884
			goto next;
N
Nick Piggin 已提交
885
		}
886 887 888 889 890 891 892 893 894 895 896 897
		addr = vb->va->va_start + (i << PAGE_SHIFT);
		BUG_ON(addr_to_vb_idx(addr) !=
				addr_to_vb_idx(vb->va->va_start));
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
		spin_unlock(&vb->lock);
		break;
next:
N
Nick Piggin 已提交
898 899
		spin_unlock(&vb->lock);
	}
900 901 902 903

	if (purge)
		purge_fragmented_blocks_thiscpu();

904
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	rcu_read_unlock();

	if (!addr) {
		vb = new_vmap_block(gfp_mask);
		if (IS_ERR(vb))
			return vb;
		goto again;
	}

	return (void *)addr;
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
926 927 928

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
929 930 931 932 933 934 935 936 937 938 939
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

	spin_lock(&vb->lock);
940
	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
941

N
Nick Piggin 已提交
942 943
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
944
		BUG_ON(vb->free);
N
Nick Piggin 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

970 971 972
	if (unlikely(!vmap_initialized))
		return;

N
Nick Piggin 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			int i;

			spin_lock(&vb->lock);
			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
			while (i < VMAP_BBMAP_BITS) {
				unsigned long s, e;
				int j;
				j = find_next_zero_bit(vb->dirty_map,
					VMAP_BBMAP_BITS, i);

				s = vb->va->va_start + (i << PAGE_SHIFT);
				e = vb->va->va_start + (j << PAGE_SHIFT);
				vunmap_page_range(s, e);
				flush = 1;

				if (s < start)
					start = s;
				if (e > end)
					end = e;

				i = j;
				i = find_next_bit(vb->dirty_map,
							VMAP_BBMAP_BITS, i);
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

	__purge_vmap_area_lazy(&start, &end, 1, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr = (unsigned long)mem;

	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
	BUG_ON(addr & (PAGE_SIZE-1));

	debug_check_no_locks_freed(mem, size);
1028
	vmap_debug_free_range(addr, addr+size);
N
Nick Piggin 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (likely(count <= VMAP_MAX_ALLOC))
		vb_free(mem, size);
	else
		free_unmap_vmap_area_addr(addr);
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1043 1044
 *
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1075 1076 1077
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1078
 * @align: requested alignment
1079 1080 1081 1082 1083 1084 1085 1086
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1087
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1088 1089
{
	static size_t vm_init_off __initdata;
1090 1091 1092 1093
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1094

1095
	vm->addr = (void *)addr;
1096 1097 1098 1099 1100

	vm->next = vmlist;
	vmlist = vm;
}

N
Nick Piggin 已提交
1101 1102
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1103 1104
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
	}
1114

I
Ivan Kokshaysky 已提交
1115 1116
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1117
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
I
Ivan Kokshaysky 已提交
1118 1119 1120 1121 1122
		va->flags = tmp->flags | VM_VM_AREA;
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
		__insert_vmap_area(va);
	}
1123 1124 1125

	vmap_area_pcpu_hole = VMALLOC_END;

1126
	vmap_initialized = true;
N
Nick Piggin 已提交
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1181 1182 1183
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1184 1185

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}

int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
	unsigned long addr = (unsigned long)area->addr;
	unsigned long end = addr + area->size - PAGE_SIZE;
	int err;

	err = vmap_page_range(addr, end, prot, *pages);
	if (err > 0) {
		*pages += err;
		err = 0;
	}

	return err;
}
EXPORT_SYMBOL_GPL(map_vm_area);

/*** Old vmalloc interfaces ***/
DEFINE_RWLOCK(vmlist_lock);
struct vm_struct *vmlist;

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, void *caller)
{
	struct vm_struct *tmp, **p;

	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
	va->private = vm;
	va->flags |= VM_VM_AREA;

	write_lock(&vmlist_lock);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr)
			break;
	}
	vm->next = *p;
	*p = vm;
	write_unlock(&vmlist_lock);
}

N
Nick Piggin 已提交
1232
static struct vm_struct *__get_vm_area_node(unsigned long size,
1233 1234
		unsigned long align, unsigned long flags, unsigned long start,
		unsigned long end, int node, gfp_t gfp_mask, void *caller)
N
Nick Piggin 已提交
1235 1236 1237
{
	static struct vmap_area *va;
	struct vm_struct *area;
L
Linus Torvalds 已提交
1238

1239
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (flags & VM_IOREMAP) {
		int bit = fls(size);

		if (bit > IOREMAP_MAX_ORDER)
			bit = IOREMAP_MAX_ORDER;
		else if (bit < PAGE_SHIFT)
			bit = PAGE_SHIFT;

		align = 1ul << bit;
	}
N
Nick Piggin 已提交
1250

L
Linus Torvalds 已提交
1251
	size = PAGE_ALIGN(size);
1252 1253
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1254

1255
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263
	if (unlikely(!area))
		return NULL;

	/*
	 * We always allocate a guard page.
	 */
	size += PAGE_SIZE;

N
Nick Piggin 已提交
1264 1265 1266 1267
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1268 1269
	}

1270
	insert_vmalloc_vm(area, va, flags, caller);
L
Linus Torvalds 已提交
1271 1272 1273
	return area;
}

C
Christoph Lameter 已提交
1274 1275 1276
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
1277
	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278
						__builtin_return_address(0));
C
Christoph Lameter 已提交
1279
}
1280
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1281

1282 1283 1284 1285
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
				       void *caller)
{
1286
	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1287 1288 1289
				  caller);
}

L
Linus Torvalds 已提交
1290
/**
S
Simon Arlott 已提交
1291
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1301
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1302 1303 1304 1305 1306 1307
				-1, GFP_KERNEL, __builtin_return_address(0));
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
				void *caller)
{
1308
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309
						-1, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1310 1311
}

1312 1313
struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
				   int node, gfp_t gfp_mask)
C
Christoph Lameter 已提交
1314
{
1315 1316
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
				  node, gfp_mask, __builtin_return_address(0));
C
Christoph Lameter 已提交
1317 1318
}

N
Nick Piggin 已提交
1319
static struct vm_struct *find_vm_area(const void *addr)
1320
{
N
Nick Piggin 已提交
1321
	struct vmap_area *va;
1322

N
Nick Piggin 已提交
1323 1324 1325
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
		return va->private;
L
Linus Torvalds 已提交
1326 1327 1328 1329

	return NULL;
}

1330
/**
S
Simon Arlott 已提交
1331
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1332 1333 1334 1335 1336 1337
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1338
struct vm_struct *remove_vm_area(const void *addr)
1339
{
N
Nick Piggin 已提交
1340 1341 1342 1343 1344 1345
	struct vmap_area *va;

	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
		struct vm_struct *vm = va->private;
		struct vm_struct *tmp, **p;
1346 1347 1348 1349 1350
		/*
		 * remove from list and disallow access to this vm_struct
		 * before unmap. (address range confliction is maintained by
		 * vmap.)
		 */
N
Nick Piggin 已提交
1351 1352 1353 1354 1355 1356
		write_lock(&vmlist_lock);
		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
			;
		*p = tmp->next;
		write_unlock(&vmlist_lock);

1357 1358 1359 1360
		vmap_debug_free_range(va->va_start, va->va_end);
		free_unmap_vmap_area(va);
		vm->size -= PAGE_SIZE;

N
Nick Piggin 已提交
1361 1362 1363
		return vm;
	}
	return NULL;
1364 1365
}

1366
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373
{
	struct vm_struct *area;

	if (!addr)
		return;

	if ((PAGE_SIZE-1) & (unsigned long)addr) {
A
Arjan van de Ven 已提交
1374
		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
		return;
	}

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
1380
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1381 1382 1383 1384
				addr);
		return;
	}

1385
	debug_check_no_locks_freed(addr, area->size);
1386
	debug_check_no_obj_freed(addr, area->size);
1387

L
Linus Torvalds 已提交
1388 1389 1390 1391
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1392 1393 1394 1395
			struct page *page = area->pages[i];

			BUG_ON(!page);
			__free_page(page);
L
Linus Torvalds 已提交
1396 1397
		}

1398
		if (area->flags & VM_VPAGES)
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			vfree(area->pages);
		else
			kfree(area->pages);
	}

	kfree(area);
	return;
}

/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1412
 *	Free the virtually continuous memory area starting at @addr, as
1413 1414
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1415
 *
1416
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1417
 */
1418
void vfree(const void *addr)
L
Linus Torvalds 已提交
1419 1420
{
	BUG_ON(in_interrupt());
1421 1422 1423

	kmemleak_free(addr);

L
Linus Torvalds 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1435
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1436
 */
1437
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1438 1439
{
	BUG_ON(in_interrupt());
1440
	might_sleep();
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	__vunmap(addr, 0);
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

1460 1461
	might_sleep();

1462
	if (count > totalram_pages)
L
Linus Torvalds 已提交
1463 1464
		return NULL;

1465 1466
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
					__builtin_return_address(0));
L
Linus Torvalds 已提交
1467 1468
	if (!area)
		return NULL;
1469

L
Linus Torvalds 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478
	if (map_vm_area(area, prot, &pages)) {
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1479 1480
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
N
Nick Piggin 已提交
1481
			    int node, void *caller);
A
Adrian Bunk 已提交
1482
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483
				 pgprot_t prot, int node, void *caller)
L
Linus Torvalds 已提交
1484 1485 1486
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1487
	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493

	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1494
	if (array_size > PAGE_SIZE) {
1495
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496
				PAGE_KERNEL, node, caller);
1497
		area->flags |= VM_VPAGES;
1498
	} else {
1499
		pages = kmalloc_node(array_size, nested_gfp, node);
1500
	}
L
Linus Torvalds 已提交
1501
	area->pages = pages;
1502
	area->caller = caller;
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1510 1511
		struct page *page;

C
Christoph Lameter 已提交
1512
		if (node < 0)
1513
			page = alloc_page(gfp_mask);
C
Christoph Lameter 已提交
1514
		else
1515 1516 1517
			page = alloc_pages_node(node, gfp_mask, 0);

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1518 1519 1520 1521
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1522
		area->pages[i] = page;
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	}

	if (map_vm_area(area, prot, &pages))
		goto fail;
	return area->addr;

fail:
	vfree(area->addr);
	return NULL;
}

C
Christoph Lameter 已提交
1534 1535
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
{
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
					 __builtin_return_address(0));

	/*
	 * A ref_count = 3 is needed because the vm_struct and vmap_area
	 * structures allocated in the __get_vm_area_node() function contain
	 * references to the virtual address of the vmalloc'ed block.
	 */
	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);

	return addr;
C
Christoph Lameter 已提交
1547 1548
}

L
Linus Torvalds 已提交
1549
/**
C
Christoph Lameter 已提交
1550
 *	__vmalloc_node  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1551
 *	@size:		allocation size
1552
 *	@align:		desired alignment
L
Linus Torvalds 已提交
1553 1554
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
1555
 *	@node:		node to use for allocation or -1
1556
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1562 1563 1564
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, void *caller)
L
Linus Torvalds 已提交
1565 1566
{
	struct vm_struct *area;
1567 1568
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1569 1570

	size = PAGE_ALIGN(size);
1571
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
L
Linus Torvalds 已提交
1572 1573
		return NULL;

1574 1575
	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
				  VMALLOC_END, node, gfp_mask, caller);
1576

L
Linus Torvalds 已提交
1577 1578 1579
	if (!area)
		return NULL;

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);

	/*
	 * A ref_count = 3 is needed because the vm_struct and vmap_area
	 * structures allocated in the __get_vm_area_node() function contain
	 * references to the virtual address of the vmalloc'ed block.
	 */
	kmemleak_alloc(addr, real_size, 3, gfp_mask);

	return addr;
L
Linus Torvalds 已提交
1590 1591
}

C
Christoph Lameter 已提交
1592 1593
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
1594
	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1595
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1596
}
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602 1603 1604
EXPORT_SYMBOL(__vmalloc);

/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1605
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1606 1607 1608 1609
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
1610
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1611
					-1, __builtin_return_address(0));
L
Linus Torvalds 已提交
1612 1613 1614
}
EXPORT_SYMBOL(vmalloc);

1615
/**
1616 1617
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1618
 *
1619 1620
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1621 1622 1623 1624 1625 1626
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1627 1628
	ret = __vmalloc_node(size, SHMLBA,
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
G
Glauber Costa 已提交
1629
			     PAGE_KERNEL, -1, __builtin_return_address(0));
1630
	if (ret) {
N
Nick Piggin 已提交
1631
		area = find_vm_area(ret);
1632 1633
		area->flags |= VM_USERMAP;
	}
1634 1635 1636 1637
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1638 1639 1640
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1641
 *	@node:		numa node
C
Christoph Lameter 已提交
1642 1643 1644 1645
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1646
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1647 1648 1649 1650
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1651
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1652
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1653 1654 1655
}
EXPORT_SYMBOL(vmalloc_node);

1656 1657 1658 1659
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666 1667
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1668
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1674
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
G
Glauber Costa 已提交
1675
			      -1, __builtin_return_address(0));
L
Linus Torvalds 已提交
1676 1677
}

1678
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1679
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1680
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1681
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1682 1683 1684 1685
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1695
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
G
Glauber Costa 已提交
1696
			      -1, __builtin_return_address(0));
L
Linus Torvalds 已提交
1697 1698 1699
}
EXPORT_SYMBOL(vmalloc_32);

1700
/**
1701
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1702
 *	@size:		allocation size
1703 1704 1705
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1706 1707 1708 1709 1710 1711
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1712
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
G
Glauber Costa 已提交
1713
			     -1, __builtin_return_address(0));
1714
	if (ret) {
N
Nick Piggin 已提交
1715
		area = find_vm_area(ret);
1716 1717
		area->flags |= VM_USERMAP;
	}
1718 1719 1720 1721
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
			void *map = kmap_atomic(p, KM_USER0);
			memcpy(buf, map + offset, length);
			kunmap_atomic(map, KM_USER0);
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
			void *map = kmap_atomic(p, KM_USER0);
			memcpy(map + offset, buf, length);
			kunmap_atomic(map, KM_USER0);
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
 *	vm_struct area, returns 0.
 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
 *	the caller should guarantee KM_USER0 is not used.
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
1831 1832 1833 1834
long vread(char *buf, char *addr, unsigned long count)
{
	struct vm_struct *tmp;
	char *vaddr, *buf_start = buf;
1835
	unsigned long buflen = count;
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840 1841 1842
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

	read_lock(&vmlist_lock);
1843
	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		vaddr = (char *) tmp->addr;
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
		n = vaddr + tmp->size - PAGE_SIZE - addr;
1856 1857 1858 1859 1860 1861 1862 1863 1864
		if (n > count)
			n = count;
		if (!(tmp->flags & VM_IOREMAP))
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
1865 1866 1867
	}
finished:
	read_unlock(&vmlist_lock);
1868 1869 1870 1871 1872 1873 1874 1875

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
1876 1877
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
 *	vm_struct area, returns 0.
 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
 *	the caller should guarantee KM_USER0 is not used.
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 *	The caller should guarantee KM_USER1 is not used.
 */

L
Linus Torvalds 已提交
1908 1909 1910
long vwrite(char *buf, char *addr, unsigned long count)
{
	struct vm_struct *tmp;
1911 1912 1913
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
1914 1915 1916 1917

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
1918
	buflen = count;
L
Linus Torvalds 已提交
1919 1920

	read_lock(&vmlist_lock);
1921
	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		vaddr = (char *) tmp->addr;
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
		n = vaddr + tmp->size - PAGE_SIZE - addr;
1933 1934 1935 1936 1937 1938 1939 1940 1941
		if (n > count)
			n = count;
		if (!(tmp->flags & VM_IOREMAP)) {
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
1942 1943 1944
	}
finished:
	read_unlock(&vmlist_lock);
1945 1946 1947
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
1948
}
1949 1950 1951 1952 1953 1954

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
1955 1956
 *
 *	Returns:	0 for success, -Exxx on failure
1957 1958 1959 1960 1961
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
1962
 *	Similar to remap_pfn_range() (see mm/memory.c)
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	struct vm_struct *area;
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;

	if ((PAGE_SIZE-1) & (unsigned long)addr)
		return -EINVAL;

N
Nick Piggin 已提交
1974
	area = find_vm_area(addr);
1975
	if (!area)
N
Nick Piggin 已提交
1976
		return -EINVAL;
1977 1978

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
1979
		return -EINVAL;
1980 1981

	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
N
Nick Piggin 已提交
1982
		return -EINVAL;
1983 1984 1985 1986

	addr += pgoff << PAGE_SHIFT;
	do {
		struct page *page = vmalloc_to_page(addr);
N
Nick Piggin 已提交
1987 1988
		int ret;

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
		addr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);

	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
	vma->vm_flags |= VM_RESERVED;

N
Nick Piggin 已提交
2001
	return 0;
2002 2003 2004
}
EXPORT_SYMBOL(remap_vmalloc_range);

2005 2006 2007 2008 2009 2010 2011
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
void  __attribute__((weak)) vmalloc_sync_all(void)
{
}
2012 2013


2014
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2015 2016 2017 2018 2019 2020 2021 2022
{
	/* apply_to_page_range() does all the hard work. */
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2023 2024
 *
 *	Returns:	NULL on failure, vm_struct on success
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
 *	are created.  If the kernel address space is not shared
 *	between processes, it syncs the pagetable across all
 *	processes.
 */
struct vm_struct *alloc_vm_area(size_t size)
{
	struct vm_struct *area;

2036 2037
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
				area->size, f, NULL)) {
		free_vm_area(area);
		return NULL;
	}

	/* Make sure the pagetables are constructed in process kernel
	   mappings */
	vmalloc_sync_all();

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2067

2068
#ifdef CONFIG_SMP
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static struct vmap_area *node_to_va(struct rb_node *n)
{
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 * @gfp_mask: allocation mask
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
 * congruent vmalloc areas for it.  These areas tend to be scattered
 * pretty far, distance between two areas easily going up to
 * gigabytes.  To avoid interacting with regular vmallocs, these areas
 * are allocated from top.
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
 * necessary data structres are inserted and the result is returned.
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
				     size_t align, gfp_t gfp_mask)
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	gfp_mask &= GFP_RECLAIM_MASK;

	/* verify parameters and allocate data structures */
	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

		for (area2 = 0; area2 < nr_vms; area2++) {
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

			if (area2 == area)
				continue;

			BUG_ON(start2 >= start && start2 < end);
			BUG_ON(end2 <= end && end2 > start);
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
	if (!vas || !vms)
		goto err_free;

	for (area = 0; area < nr_vms; area++) {
		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				  pcpu_get_vm_areas);

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
		if (vas)
			kfree(vas[area]);
		if (vms)
			kfree(vms[area]);
	}
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2349
#endif	/* CONFIG_SMP */
2350 2351 2352

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2353
	__acquires(&vmlist_lock)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
{
	loff_t n = *pos;
	struct vm_struct *v;

	read_lock(&vmlist_lock);
	v = vmlist;
	while (n > 0 && v) {
		n--;
		v = v->next;
	}
	if (!n)
		return v;

	return NULL;

}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct vm_struct *v = p;

	++*pos;
	return v->next;
}

static void s_stop(struct seq_file *m, void *p)
2380
	__releases(&vmlist_lock)
2381 2382 2383 2384
{
	read_unlock(&vmlist_lock);
}

E
Eric Dumazet 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
	if (NUMA_BUILD) {
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2404 2405 2406 2407 2408 2409 2410
static int s_show(struct seq_file *m, void *p)
{
	struct vm_struct *v = p;

	seq_printf(m, "0x%p-0x%p %7ld",
		v->addr, v->addr + v->size, v->size);

2411
	if (v->caller) {
H
Hugh Dickins 已提交
2412
		char buff[KSYM_SYMBOL_LEN];
2413 2414 2415 2416 2417 2418

		seq_putc(m, ' ');
		sprint_symbol(buff, (unsigned long)v->caller);
		seq_puts(m, buff);
	}

2419 2420 2421 2422
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2423
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	if (v->flags & VM_IOREMAP)
		seq_printf(m, " ioremap");

	if (v->flags & VM_ALLOC)
		seq_printf(m, " vmalloc");

	if (v->flags & VM_MAP)
		seq_printf(m, " vmap");

	if (v->flags & VM_USERMAP)
		seq_printf(m, " user");

	if (v->flags & VM_VPAGES)
		seq_printf(m, " vpages");

E
Eric Dumazet 已提交
2440
	show_numa_info(m, v);
2441 2442 2443 2444
	seq_putc(m, '\n');
	return 0;
}

2445
static const struct seq_operations vmalloc_op = {
2446 2447 2448 2449 2450
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2451 2452 2453 2454 2455 2456

static int vmalloc_open(struct inode *inode, struct file *file)
{
	unsigned int *ptr = NULL;
	int ret;

2457
	if (NUMA_BUILD) {
2458
		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2459 2460 2461
		if (ptr == NULL)
			return -ENOMEM;
	}
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	ret = seq_open(file, &vmalloc_op);
	if (!ret) {
		struct seq_file *m = file->private_data;
		m->private = ptr;
	} else
		kfree(ptr);
	return ret;
}

static const struct file_operations proc_vmalloc_operations = {
	.open		= vmalloc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};

static int __init proc_vmalloc_init(void)
{
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
	return 0;
}
module_init(proc_vmalloc_init);
2484 2485
#endif