x86.c 81.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
S
Sheng Yang 已提交
20
#include "i8254.h"
21

22
#include <linux/clocksource.h>
23 24 25
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
26
#include <linux/module.h>
27
#include <linux/mman.h>
28
#include <linux/highmem.h>
29 30

#include <asm/uaccess.h>
31
#include <asm/msr.h>
32
#include <asm/desc.h>
33

34
#define MAX_IO_MSRS 256
35 36 37 38 39 40 41 42 43 44 45
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46 47 48 49 50 51 52 53 54
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
55

56 57
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
58

59 60 61
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

62 63
struct kvm_x86_ops *kvm_x86_ops;

64
struct kvm_stats_debugfs_item debugfs_entries[] = {
65 66 67 68 69 70 71 72 73 74 75
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
76
	{ "hypercalls", VCPU_STAT(hypercalls) },
77 78 79 80 81 82 83
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
84 85 86 87 88 89
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
90
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
91
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
92
	{ "largepages", VM_STAT(lpages) },
93 94 95 96
	{ NULL }
};


97 98 99
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
100
	struct desc_struct *d;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
116 117 118
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
119
#ifdef CONFIG_X86_64
120 121
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
122 123 124 125 126
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

127 128 129
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
130
		return vcpu->arch.apic_base;
131
	else
132
		return vcpu->arch.apic_base;
133 134 135 136 137 138 139 140 141
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
142
		vcpu->arch.apic_base = data;
143 144 145
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

146 147
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
148 149 150 151
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
152 153 154
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

155 156 157 158
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
159 160 161 162 163 164 165 166 167 168
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
169 170
		return;
	}
171
	vcpu->arch.cr2 = addr;
172 173 174
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

175 176
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
177 178 179 180 181
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
182 183 184 185 186
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
187 188 189
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
190 191
}

192 193 194 195 196 197 198 199 200
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
201
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
202

203
	down_read(&vcpu->kvm->slots_lock);
204 205 206 207 208 209 210 211 212 213 214 215 216 217
	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

218
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219
out:
220
	up_read(&vcpu->kvm->slots_lock);
221 222 223

	return ret;
}
224
EXPORT_SYMBOL_GPL(load_pdptrs);
225

226 227
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
228
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 230 231 232 233 234
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

235
	down_read(&vcpu->kvm->slots_lock);
236
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 238
	if (r < 0)
		goto out;
239
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
240
out:
241
	up_read(&vcpu->kvm->slots_lock);
242 243 244 245

	return changed;
}

246
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
247 248 249
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
250
		       cr0, vcpu->arch.cr0);
251
		kvm_inject_gp(vcpu, 0);
252 253 254 255 256
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
257
		kvm_inject_gp(vcpu, 0);
258 259 260 261 262 263
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
264
		kvm_inject_gp(vcpu, 0);
265 266 267 268 269
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
270
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 272 273 274 275
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
276
				kvm_inject_gp(vcpu, 0);
277 278 279 280 281 282
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
283
				kvm_inject_gp(vcpu, 0);
284 285 286 287 288
				return;

			}
		} else
#endif
289
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
290 291
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
292
			kvm_inject_gp(vcpu, 0);
293 294 295 296 297 298
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
299
	vcpu->arch.cr0 = cr0;
300 301 302 303

	kvm_mmu_reset_context(vcpu);
	return;
}
304
EXPORT_SYMBOL_GPL(kvm_set_cr0);
305

306
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
307
{
308
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
309
}
310
EXPORT_SYMBOL_GPL(kvm_lmsw);
311

312
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
313 314 315
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316
		kvm_inject_gp(vcpu, 0);
317 318 319 320 321 322 323
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
324
			kvm_inject_gp(vcpu, 0);
325 326 327
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330
		kvm_inject_gp(vcpu, 0);
331 332 333 334 335
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336
		kvm_inject_gp(vcpu, 0);
337 338 339
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
340
	vcpu->arch.cr4 = cr4;
341 342
	kvm_mmu_reset_context(vcpu);
}
343
EXPORT_SYMBOL_GPL(kvm_set_cr4);
344

345
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
346
{
347
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 349 350 351
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

352 353 354
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355
			kvm_inject_gp(vcpu, 0);
356 357 358 359 360 361 362
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
363
				kvm_inject_gp(vcpu, 0);
364 365 366 367 368
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
369
				kvm_inject_gp(vcpu, 0);
370 371 372 373 374 375 376 377 378
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

379
	down_read(&vcpu->kvm->slots_lock);
380 381 382 383 384 385 386 387 388 389
	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
390
		kvm_inject_gp(vcpu, 0);
391
	else {
392 393
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
394
	}
395
	up_read(&vcpu->kvm->slots_lock);
396
}
397
EXPORT_SYMBOL_GPL(kvm_set_cr3);
398

399
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
400 401 402
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
403
		kvm_inject_gp(vcpu, 0);
404 405 406 407 408
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
409
		vcpu->arch.cr8 = cr8;
410
}
411
EXPORT_SYMBOL_GPL(kvm_set_cr8);
412

413
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
414 415 416 417
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
418
		return vcpu->arch.cr8;
419
}
420
EXPORT_SYMBOL_GPL(kvm_get_cr8);
421

422 423 424 425 426 427 428 429 430 431 432 433 434
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
435
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
436
	MSR_IA32_PERF_STATUS,
437 438 439 440 441 442 443 444
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

445 446
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
447
	if (efer & efer_reserved_bits) {
448 449
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
450
		kvm_inject_gp(vcpu, 0);
451 452 453 454
		return;
	}

	if (is_paging(vcpu)
455
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
456
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
457
		kvm_inject_gp(vcpu, 0);
458 459 460 461 462 463
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
464
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
465

466
	vcpu->arch.shadow_efer = efer;
467 468
}

469 470 471 472 473 474 475
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


476 477 478 479 480 481 482 483 484 485
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

486 487 488 489 490 491 492 493
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
	struct kvm_wall_clock wc;
	struct timespec wc_ts;

	if (!wall_clock)
		return;

	version++;

	down_read(&kvm->slots_lock);
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

	wc_ts = current_kernel_time();
	wc.wc_sec = wc_ts.tv_sec;
	wc.wc_nsec = wc_ts.tv_nsec;
	wc.wc_version = version;

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
	up_read(&kvm->slots_lock);
}

static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
	 * state, we just write "2" at the end
	 */
	vcpu->hv_clock.version = 2;

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
		sizeof(vcpu->hv_clock));

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

558 559 560 561 562 563 564 565 566

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
567
		       __func__, data);
568 569 570
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
571
			__func__, data);
572
		break;
573 574
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
575
			__func__, data);
576
		break;
577 578 579 580 581 582 583 584
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
	case 0x200 ... 0x2ff: /* MTRRs */
		break;
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
585
		vcpu->arch.ia32_misc_enable_msr = data;
586
		break;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		vcpu->arch.hv_clock.tsc_to_system_mul =
					clocksource_khz2mult(tsc_khz, 22);
		vcpu->arch.hv_clock.tsc_shift = 22;

		down_read(&current->mm->mmap_sem);
		down_read(&vcpu->kvm->slots_lock);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&vcpu->kvm->slots_lock);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
625
	default:
626
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
657
	case MSR_IA32_MCG_CTL:
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		/* MTRR registers */
	case 0xfe:
	case 0x200 ... 0x2ff:
		data = 0;
		break;
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
677
		data = vcpu->arch.ia32_misc_enable_msr;
678
		break;
679 680 681 682 683 684
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
685
	case MSR_EFER:
686
		data = vcpu->arch.shadow_efer;
687
		break;
688 689 690 691 692 693
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
694 695 696 697 698 699 700 701 702
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/*
 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
 * cached on it.
 */
void decache_vcpus_on_cpu(int cpu)
{
	struct kvm *vm;
	struct kvm_vcpu *vcpu;
	int i;

	spin_lock(&kvm_lock);
	list_for_each_entry(vm, &vm_list, vm_list)
		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
			vcpu = vm->vcpus[i];
			if (!vcpu)
				continue;
			/*
			 * If the vcpu is locked, then it is running on some
			 * other cpu and therefore it is not cached on the
			 * cpu in question.
			 *
			 * If it's not locked, check the last cpu it executed
			 * on.
			 */
			if (mutex_trylock(&vcpu->mutex)) {
				if (vcpu->cpu == cpu) {
					kvm_x86_ops->vcpu_decache(vcpu);
					vcpu->cpu = -1;
				}
				mutex_unlock(&vcpu->mutex);
			}
		}
	spin_unlock(&kvm_lock);
}

810 811 812 813 814 815 816 817 818 819
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
820
	case KVM_CAP_EXT_CPUID:
821
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
822
	case KVM_CAP_PIT:
823 824
		r = 1;
		break;
825 826 827
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
828 829 830
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
831 832 833
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
834 835 836 837 838 839 840 841
	default:
		r = 0;
		break;
	}
	return r;

}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
894 895 896 897 898 899 900
	default:
		r = -EINVAL;
	}
out:
	return r;
}

901 902 903
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
904
	kvm_write_guest_time(vcpu);
905 906 907 908 909
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
910
	kvm_put_guest_fpu(vcpu);
911 912
}

913
static int is_efer_nx(void)
914 915 916 917
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
918 919 920 921 922 923 924 925
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

926
	entry = NULL;
927 928
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
929 930 931 932 933
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
934
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
935 936 937 938 939
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

940
/* when an old userspace process fills a new kernel module */
941 942 943
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
960 961 962 963 964 965 966 967 968 969 970 971
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
972 973 974 975 976 977 978 979 980 981 982 983
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
984 985 986 987 988 989 990
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
991
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
992
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
993
		goto out;
994
	vcpu->arch.cpuid_nent = cpuid->nent;
995 996 997 998 999 1000
	return 0;

out:
	return r;
}

1001 1002 1003 1004 1005 1006 1007
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1008
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1009 1010
		goto out;
	r = -EFAULT;
1011 1012
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1013 1014 1015 1016
		goto out;
	return 0;

out:
1017
	cpuid->nent = vcpu->arch.cpuid_nent;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1100
		int i, cache_type;
1101 1102 1103

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1104 1105
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1106 1107
			if (!cache_type)
				break;
1108 1109
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1110 1111 1112 1113 1114 1115
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1116
		int i, level_type;
1117 1118 1119

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1120 1121
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1122 1123
			if (!level_type)
				break;
1124 1125
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1142
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1183 1184 1185 1186
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1187
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1188 1189 1190 1191 1192 1193 1194 1195 1196
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1197
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1198 1199 1200 1201 1202 1203
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1213 1214
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1215 1216 1217 1218 1219 1220

	vcpu_put(vcpu);

	return 0;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1317 1318 1319 1320 1321 1322
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1351 1352 1353 1354 1355 1356 1357
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1374
	down_write(&kvm->slots_lock);
1375 1376

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1377
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1378

1379
	up_write(&kvm->slots_lock);
1380 1381 1382 1383 1384
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1385
	return kvm->arch.n_alloc_mmu_pages;
1386 1387
}

1388 1389 1390 1391 1392
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1393 1394
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1395 1396 1397 1398 1399 1400 1401
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1428
	down_write(&kvm->slots_lock);
1429

1430
	p = &kvm->arch.aliases[alias->slot];
1431 1432 1433 1434 1435
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1436
		if (kvm->arch.aliases[n - 1].npages)
1437
			break;
1438
	kvm->arch.naliases = n;
1439 1440 1441

	kvm_mmu_zap_all(kvm);

1442
	up_write(&kvm->slots_lock);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1535
	down_write(&kvm->slots_lock);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1551
	up_write(&kvm->slots_lock);
1552 1553 1554
	return r;
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1605 1606
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1607 1608
			r = kvm_ioapic_init(kvm);
			if (r) {
1609 1610
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1611 1612 1613 1614 1615
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1616 1617 1618 1619 1620 1621
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1634
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	case KVM_GET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit(kvm, &ps);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &ps, sizeof ps))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit(kvm, &ps);
		if (r)
			goto out;
		r = 0;
		break;
	}
1708 1709 1710 1711 1712 1713 1714
	default:
		;
	}
out:
	return r;
}

1715
static void kvm_init_msr_list(void)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1730 1731 1732 1733 1734 1735 1736 1737
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

1738 1739
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		if (dev->in_range(dev, addr))
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

	dev = vcpu_find_pervcpu_dev(vcpu, addr);
	if (dev == NULL)
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1764
	int r = X86EMUL_CONTINUE;
1765

1766
	down_read(&vcpu->kvm->slots_lock);
1767
	while (bytes) {
1768
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1769 1770 1771 1772
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1773 1774 1775 1776
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1777
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1778 1779 1780 1781
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1782 1783 1784 1785 1786

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1787
out:
1788
	up_read(&vcpu->kvm->slots_lock);
1789
	return r;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1807
	down_read(&vcpu->kvm->slots_lock);
1808
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1809
	up_read(&vcpu->kvm->slots_lock);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1825
	mutex_lock(&vcpu->kvm->lock);
1826 1827 1828
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1829
		mutex_unlock(&vcpu->kvm->lock);
1830 1831
		return X86EMUL_CONTINUE;
	}
1832
	mutex_unlock(&vcpu->kvm->lock);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
			       const void *val, int bytes)
{
	int ret;

1847
	down_read(&vcpu->kvm->slots_lock);
1848
	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1849
	if (ret < 0) {
1850
		up_read(&vcpu->kvm->slots_lock);
1851
		return 0;
1852
	}
1853
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1854
	up_read(&vcpu->kvm->slots_lock);
1855 1856 1857 1858 1859 1860 1861 1862 1863
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1864 1865
	gpa_t                 gpa;

1866
	down_read(&vcpu->kvm->slots_lock);
1867
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1868
	up_read(&vcpu->kvm->slots_lock);
1869 1870

	if (gpa == UNMAPPED_GVA) {
1871
		kvm_inject_page_fault(vcpu, addr, 2);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1886
	mutex_lock(&vcpu->kvm->lock);
1887 1888 1889
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1890
		mutex_unlock(&vcpu->kvm->lock);
1891 1892
		return X86EMUL_CONTINUE;
	}
1893
	mutex_unlock(&vcpu->kvm->lock);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
1937 1938 1939
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
1940
		gpa_t gpa;
1941
		struct page *page;
A
Andrew Morton 已提交
1942
		char *kaddr;
1943 1944
		u64 val;

1945
		down_read(&vcpu->kvm->slots_lock);
1946 1947
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

1948 1949 1950 1951 1952 1953 1954 1955
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
1956 1957

		down_read(&current->mm->mmap_sem);
1958
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1959 1960
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
1961 1962 1963
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
1964
		kvm_release_page_dirty(page);
1965
	emul_write:
1966
		up_read(&vcpu->kvm->slots_lock);
1967 1968 1969
	}
#endif

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
1985
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
1998
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	static int reported;
	u8 opcodes[4];
2020
	unsigned long rip = vcpu->arch.rip;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	unsigned long rip_linear;

	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

	if (reported)
		return;

	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
	reported = 1;
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2036
static struct x86_emulate_ops emulate_ops = {
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2047
			int emulation_type)
2048 2049
{
	int r;
2050
	struct decode_cache *c;
2051

2052
	vcpu->arch.mmio_fault_cr2 = cr2;
2053 2054 2055
	kvm_x86_ops->cache_regs(vcpu);

	vcpu->mmio_is_write = 0;
2056
	vcpu->arch.pio.string = 0;
2057

2058
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2059 2060 2061
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2062 2063 2064 2065
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2066 2067 2068 2069
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2070 2071 2072 2073 2074
		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
			vcpu->arch.emulate_ctxt.cs_base = 0;
			vcpu->arch.emulate_ctxt.ds_base = 0;
			vcpu->arch.emulate_ctxt.es_base = 0;
			vcpu->arch.emulate_ctxt.ss_base = 0;
2075
		} else {
2076
			vcpu->arch.emulate_ctxt.cs_base =
2077
					get_segment_base(vcpu, VCPU_SREG_CS);
2078
			vcpu->arch.emulate_ctxt.ds_base =
2079
					get_segment_base(vcpu, VCPU_SREG_DS);
2080
			vcpu->arch.emulate_ctxt.es_base =
2081
					get_segment_base(vcpu, VCPU_SREG_ES);
2082
			vcpu->arch.emulate_ctxt.ss_base =
2083 2084 2085
					get_segment_base(vcpu, VCPU_SREG_SS);
		}

2086
		vcpu->arch.emulate_ctxt.gs_base =
2087
					get_segment_base(vcpu, VCPU_SREG_GS);
2088
		vcpu->arch.emulate_ctxt.fs_base =
2089 2090
					get_segment_base(vcpu, VCPU_SREG_FS);

2091
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2102
		++vcpu->stat.insn_emulation;
2103
		if (r)  {
2104
			++vcpu->stat.insn_emulation_fail;
2105 2106 2107 2108 2109 2110
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2111
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2112

2113
	if (vcpu->arch.pio.string)
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

	kvm_x86_ops->decache_regs(vcpu);
2135
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2146 2147 2148 2149
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2150 2151 2152 2153
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2154 2155 2156 2157 2158
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2159
	void *p = vcpu->arch.pio_data;
2160 2161
	void *q;
	unsigned bytes;
2162
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2163

2164
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2165 2166 2167 2168 2169
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2170 2171 2172
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2173 2174 2175
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2176
	q -= vcpu->arch.pio.guest_page_offset;
2177 2178 2179 2180 2181 2182 2183
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2184
	struct kvm_pio_request *io = &vcpu->arch.pio;
2185 2186 2187 2188 2189 2190 2191
	long delta;
	int r;

	kvm_x86_ops->cache_regs(vcpu);

	if (!io->string) {
		if (io->in)
2192
			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
			       io->size);
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
			if (r) {
				kvm_x86_ops->cache_regs(vcpu);
				return r;
			}
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2210
			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2211 2212 2213 2214 2215
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
		if (io->in)
2216
			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2217
		else
2218
			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	}

	kvm_x86_ops->decache_regs(vcpu);

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2236 2237 2238
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2239 2240
				  pd);
	else
2241 2242
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2243 2244 2245 2246 2247 2248 2249
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2250 2251
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
					       gpa_t addr)
{
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2277
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2278
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2279 2280 2281 2282 2283 2284 2285
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2286 2287

	kvm_x86_ops->cache_regs(vcpu);
2288
	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2289 2290 2291 2292 2293 2294
	kvm_x86_ops->decache_regs(vcpu);

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	pio_dev = vcpu_find_pio_dev(vcpu, port);
	if (pio_dev) {
2295
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2315
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2316
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2317 2318 2319 2320 2321 2322 2323
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2349
		kvm_inject_gp(vcpu, 0);
2350 2351 2352
		return 1;
	}
	vcpu->run->io.count = now;
2353
	vcpu->arch.pio.cur_count = now;
2354

2355
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2356 2357 2358
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
2359
		down_read(&vcpu->kvm->slots_lock);
2360
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2361
		vcpu->arch.pio.guest_pages[i] = page;
2362
		up_read(&vcpu->kvm->slots_lock);
2363
		if (!page) {
2364
			kvm_inject_gp(vcpu, 0);
2365 2366 2367 2368 2369 2370
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

	pio_dev = vcpu_find_pio_dev(vcpu, port);
2371
	if (!vcpu->arch.pio.in) {
2372 2373 2374 2375 2376
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2377
			if (vcpu->arch.pio.count == 0)
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2389
int kvm_arch_init(void *opaque)
2390
{
2391
	int r;
2392 2393 2394 2395
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2396 2397
		r = -EEXIST;
		goto out;
2398 2399 2400 2401
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2402 2403
		r = -EOPNOTSUPP;
		goto out;
2404 2405 2406
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2407 2408
		r = -EOPNOTSUPP;
		goto out;
2409 2410
	}

2411 2412 2413 2414 2415 2416
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2417
	kvm_x86_ops = ops;
2418
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2419
	return 0;
2420 2421 2422

out:
	return r;
2423
}
2424

2425 2426 2427
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2428 2429
	kvm_mmu_module_exit();
}
2430

2431 2432 2433 2434
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
	if (irqchip_in_kernel(vcpu->kvm)) {
2435
		vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2436
		kvm_vcpu_block(vcpu);
2437
		if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;

	kvm_x86_ops->cache_regs(vcpu);

2453 2454 2455 2456 2457
	nr = vcpu->arch.regs[VCPU_REGS_RAX];
	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2468 2469 2470
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2471 2472 2473 2474
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2475
	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2476
	kvm_x86_ops->decache_regs(vcpu);
A
Amit Shah 已提交
2477
	++vcpu->stat.hypercalls;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->cache_regs(vcpu);
	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2497
	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2526
	kvm_lmsw(vcpu, msw);
2527 2528 2529 2530 2531 2532 2533 2534
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
2535
		return vcpu->arch.cr0;
2536
	case 2:
2537
		return vcpu->arch.cr2;
2538
	case 3:
2539
		return vcpu->arch.cr3;
2540
	case 4:
2541
		return vcpu->arch.cr4;
2542
	case 8:
2543
		return kvm_get_cr8(vcpu);
2544
	default:
2545
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2546 2547 2548 2549 2550 2551 2552 2553 2554
		return 0;
	}
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
	switch (cr) {
	case 0:
2555
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2556 2557 2558
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2559
		vcpu->arch.cr2 = val;
2560 2561
		break;
	case 3:
2562
		kvm_set_cr3(vcpu, val);
2563 2564
		break;
	case 4:
2565
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2566
		break;
2567
	case 8:
2568
		kvm_set_cr8(vcpu, val & 0xfUL);
2569
		break;
2570
	default:
2571
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2572 2573 2574
	}
}

2575 2576
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2577 2578
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2579 2580 2581 2582

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2583
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2607 2608 2609
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2610 2611
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2612 2613

	kvm_x86_ops->cache_regs(vcpu);
2614 2615 2616 2617 2618 2619
	function = vcpu->arch.regs[VCPU_REGS_RAX];
	index = vcpu->arch.regs[VCPU_REGS_RCX];
	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2620
	best = NULL;
2621 2622
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2623 2624 2625
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2637 2638 2639 2640
		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2641 2642 2643 2644 2645
	}
	kvm_x86_ops->decache_regs(vcpu);
	kvm_x86_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2656
	return (!vcpu->arch.irq_summary &&
2657
		kvm_run->request_interrupt_window &&
2658
		vcpu->arch.interrupt_window_open &&
2659 2660 2661 2662 2663 2664 2665
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2666
	kvm_run->cr8 = kvm_get_cr8(vcpu);
2667 2668 2669 2670 2671
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2672 2673
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2674 2675
}

A
Avi Kivity 已提交
2676 2677 2678 2679 2680 2681 2682 2683
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2684
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2685
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2686
	up_read(&current->mm->mmap_sem);
2687 2688

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}

2702 2703 2704 2705
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2706
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2707
		pr_debug("vcpu %d received sipi with vector # %x\n",
2708
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2709 2710 2711 2712
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2713
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2714 2715
	}

A
Avi Kivity 已提交
2716 2717
	vapic_enter(vcpu);

2718 2719 2720 2721 2722
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2723 2724 2725 2726
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2727 2728 2729 2730
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2731 2732 2733
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
			__kvm_migrate_apic_timer(vcpu);
A
Avi Kivity 已提交
2734 2735 2736 2737 2738 2739
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
2740 2741 2742 2743 2744
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
2745
	}
A
Avi Kivity 已提交
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2756 2757 2758 2759 2760 2761 2762
	if (need_resched()) {
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2763 2764 2765 2766 2767 2768 2769 2770
	if (vcpu->requests)
		if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
			local_irq_enable();
			preempt_enable();
			r = 1;
			goto out;
		}

2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2780
	if (vcpu->arch.exception.pending)
2781 2782
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2783
		kvm_x86_ops->inject_pending_irq(vcpu);
2784
	else
2785 2786
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2787 2788
	kvm_lapic_sync_to_vapic(vcpu);

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	vcpu->guest_mode = 1;
	kvm_guest_enter();

	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);

	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
		kvm_x86_ops->cache_regs(vcpu);
2820
		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2821 2822
	}

2823 2824
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2825

A
Avi Kivity 已提交
2826 2827
	kvm_lapic_sync_from_vapic(vcpu);

2828 2829 2830 2831 2832 2833 2834 2835 2836
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2837
		if (!need_resched())
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
			goto again;
	}

out:
	if (r > 0) {
		kvm_resched(vcpu);
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
2849 2850
	vapic_exit(vcpu);

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2861
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		kvm_vcpu_block(vcpu);
		vcpu_put(vcpu);
		return -EAGAIN;
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
2872
		kvm_set_cr8(vcpu, kvm_run->cr8);
2873

2874
	if (vcpu->arch.pio.cur_count) {
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
		r = emulate_instruction(vcpu, kvm_run,
2885 2886
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
		kvm_x86_ops->cache_regs(vcpu);
2898
		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		kvm_x86_ops->decache_regs(vcpu);
	}

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

	kvm_x86_ops->cache_regs(vcpu);

2918 2919 2920 2921 2922 2923 2924 2925
	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2926
#ifdef CONFIG_X86_64
2927 2928 2929 2930 2931 2932 2933 2934
	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2935 2936
#endif

2937
	regs->rip = vcpu->arch.rip;
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

2955 2956 2957 2958 2959 2960 2961 2962
	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2963
#ifdef CONFIG_X86_64
2964 2965 2966 2967 2968 2969 2970 2971
	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2972 2973
#endif

2974
	vcpu->arch.rip = regs->rip;
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);

	kvm_x86_ops->decache_regs(vcpu);

	vcpu_put(vcpu);

	return 0;
}

static void get_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
2987
	kvm_x86_ops->get_segment(vcpu, var, seg);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

	get_segment(vcpu, &cs, VCPU_SREG_CS);
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

	get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3026 3027 3028 3029
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3030
	sregs->cr8 = kvm_get_cr8(vcpu);
3031
	sregs->efer = vcpu->arch.shadow_efer;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3042
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

static void set_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
3053
	kvm_x86_ops->set_segment(vcpu, var, seg);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3072 3073 3074
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3075

3076
	kvm_set_cr8(vcpu, sregs->cr8);
3077

3078
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3079 3080 3081 3082 3083
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3084
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3085
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3086
	vcpu->arch.cr0 = sregs->cr0;
3087

3088
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3089 3090
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3091
		load_pdptrs(vcpu, vcpu->arch.cr3);
3092 3093 3094 3095 3096

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3097 3098 3099 3100 3101 3102
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

	set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3176
	down_read(&vcpu->kvm->slots_lock);
3177
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3178
	up_read(&vcpu->kvm->slots_lock);
3179 3180 3181 3182 3183 3184 3185 3186 3187
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3188 3189
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3190
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3210
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3234
	fx_save(&vcpu->arch.host_fx_image);
3235
	fpu_init();
3236 3237
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
3238 3239
	preempt_enable();

3240
	vcpu->arch.cr0 |= X86_CR0_ET;
3241
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3242 3243
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3254 3255
	fx_save(&vcpu->arch.host_fx_image);
	fx_restore(&vcpu->arch.guest_fx_image);
3256 3257 3258 3259 3260 3261 3262 3263 3264
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3265 3266
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3267
	++vcpu->stat.fpu_reload;
3268 3269
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3270 3271 3272 3273 3274 3275 3276 3277 3278

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3279 3280
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3281

3282 3283 3284
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3285 3286

	/* We do fxsave: this must be aligned. */
3287
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3288 3289 3290 3291 3292 3293 3294 3295 3296

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3297
	return 0;
3298 3299
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3300
	return r;
3301 3302
}

3303
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3351
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3352
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3353
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3354
	else
3355
		vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3356 3357 3358 3359 3360 3361

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3362
	vcpu->arch.pio_data = page_address(page);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3379
	free_page((unsigned long)vcpu->arch.pio_data);
3380 3381 3382 3383 3384 3385 3386 3387
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
	kvm_mmu_destroy(vcpu);
3388
	free_page((unsigned long)vcpu->arch.pio_data);
3389
}
3390 3391 3392 3393 3394 3395 3396 3397

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3398
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
S
Sheng Yang 已提交
3431
	kvm_free_pit(kvm);
3432 3433
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3434 3435 3436 3437
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
	kfree(kvm);
}
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
3452
			down_write(&current->mm->mmap_sem);
3453 3454 3455 3456 3457
			memslot->userspace_addr = do_mmap(NULL, 0,
						     npages * PAGE_SIZE,
						     PROT_READ | PROT_WRITE,
						     MAP_SHARED | MAP_ANONYMOUS,
						     0);
3458
			up_write(&current->mm->mmap_sem);
3459 3460 3461 3462 3463 3464 3465

			if (IS_ERR((void *)memslot->userspace_addr))
				return PTR_ERR((void *)memslot->userspace_addr);
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

3466
				down_write(&current->mm->mmap_sem);
3467 3468
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
3469
				up_write(&current->mm->mmap_sem);
3470 3471 3472 3473 3474 3475 3476 3477
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

3478
	if (!kvm->arch.n_requested_mmu_pages) {
3479 3480 3481 3482 3483 3484 3485 3486 3487
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
3488 3489 3490 3491 3492 3493

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
}
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
	if (vcpu->guest_mode)
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
}