x86.c 80.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
20

21
#include <linux/clocksource.h>
22 23 24
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
25
#include <linux/module.h>
26
#include <linux/mman.h>
27
#include <linux/highmem.h>
28 29

#include <asm/uaccess.h>
30
#include <asm/msr.h>
31
#include <asm/desc.h>
32

33
#define MAX_IO_MSRS 256
34 35 36 37 38 39 40 41 42 43 44
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
45 46 47 48 49 50 51 52 53
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
54

55 56
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
57

58 59 60
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

61 62
struct kvm_x86_ops *kvm_x86_ops;

63
struct kvm_stats_debugfs_item debugfs_entries[] = {
64 65 66 67 68 69 70 71 72 73 74
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
75
	{ "hypercalls", VCPU_STAT(hypercalls) },
76 77 78 79 80 81 82
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
83 84 85 86 87 88
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
89
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
90
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
91
	{ "largepages", VM_STAT(lpages) },
92 93 94 95
	{ NULL }
};


96 97 98
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
99
	struct desc_struct *d;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
115 116 117
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
118
#ifdef CONFIG_X86_64
119 120
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
121 122 123 124 125
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

126 127 128
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
129
		return vcpu->arch.apic_base;
130
	else
131
		return vcpu->arch.apic_base;
132 133 134 135 136 137 138 139 140
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
141
		vcpu->arch.apic_base = data;
142 143 144
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

145 146
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
147 148 149 150
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
151 152 153
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

154 155 156 157
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
158
	if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
159 160
		printk(KERN_DEBUG "kvm: inject_page_fault:"
		       " double fault 0x%lx\n", addr);
161 162
		vcpu->arch.exception.nr = DF_VECTOR;
		vcpu->arch.exception.error_code = 0;
163 164
		return;
	}
165
	vcpu->arch.cr2 = addr;
166 167 168
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

169 170
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
171 172 173 174 175
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
176 177 178 179 180
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
181 182 183
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
184 185
}

186 187 188 189 190 191 192 193 194
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
195
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
196

197
	down_read(&vcpu->kvm->slots_lock);
198 199 200 201 202 203 204 205 206 207 208 209 210 211
	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

212
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
213
out:
214
	up_read(&vcpu->kvm->slots_lock);
215 216 217

	return ret;
}
218
EXPORT_SYMBOL_GPL(load_pdptrs);
219

220 221
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
222
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
223 224 225 226 227 228
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

229
	down_read(&vcpu->kvm->slots_lock);
230
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
231 232
	if (r < 0)
		goto out;
233
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
234
out:
235
	up_read(&vcpu->kvm->slots_lock);
236 237 238 239

	return changed;
}

240 241 242 243
void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
244
		       cr0, vcpu->arch.cr0);
245
		kvm_inject_gp(vcpu, 0);
246 247 248 249 250
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
251
		kvm_inject_gp(vcpu, 0);
252 253 254 255 256 257
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
258
		kvm_inject_gp(vcpu, 0);
259 260 261 262 263
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
264
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
265 266 267 268 269
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
270
				kvm_inject_gp(vcpu, 0);
271 272 273 274 275 276
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
277
				kvm_inject_gp(vcpu, 0);
278 279 280 281 282
				return;

			}
		} else
#endif
283
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
284 285
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
286
			kvm_inject_gp(vcpu, 0);
287 288 289 290 291 292
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
293
	vcpu->arch.cr0 = cr0;
294 295 296 297 298 299 300 301

	kvm_mmu_reset_context(vcpu);
	return;
}
EXPORT_SYMBOL_GPL(set_cr0);

void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
302
	set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
303 304 305 306 307 308 309
}
EXPORT_SYMBOL_GPL(lmsw);

void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
310
		kvm_inject_gp(vcpu, 0);
311 312 313 314 315 316 317
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
318
			kvm_inject_gp(vcpu, 0);
319 320 321
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
322
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
323
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
324
		kvm_inject_gp(vcpu, 0);
325 326 327 328 329
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
330
		kvm_inject_gp(vcpu, 0);
331 332 333
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
334
	vcpu->arch.cr4 = cr4;
335 336 337 338 339 340
	kvm_mmu_reset_context(vcpu);
}
EXPORT_SYMBOL_GPL(set_cr4);

void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
341
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
342 343 344 345
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

346 347 348
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
349
			kvm_inject_gp(vcpu, 0);
350 351 352 353 354 355 356
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
357
				kvm_inject_gp(vcpu, 0);
358 359 360 361 362
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
363
				kvm_inject_gp(vcpu, 0);
364 365 366 367 368 369 370 371 372
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

373
	down_read(&vcpu->kvm->slots_lock);
374 375 376 377 378 379 380 381 382 383
	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
384
		kvm_inject_gp(vcpu, 0);
385
	else {
386 387
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
388
	}
389
	up_read(&vcpu->kvm->slots_lock);
390 391 392 393 394 395 396
}
EXPORT_SYMBOL_GPL(set_cr3);

void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
397
		kvm_inject_gp(vcpu, 0);
398 399 400 401 402
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
403
		vcpu->arch.cr8 = cr8;
404 405 406 407 408 409 410 411
}
EXPORT_SYMBOL_GPL(set_cr8);

unsigned long get_cr8(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
412
		return vcpu->arch.cr8;
413 414 415
}
EXPORT_SYMBOL_GPL(get_cr8);

416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
429
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
430
	MSR_IA32_PERF_STATUS,
431 432 433 434 435 436 437 438
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

439 440
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
441
	if (efer & efer_reserved_bits) {
442 443
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
444
		kvm_inject_gp(vcpu, 0);
445 446 447 448
		return;
	}

	if (is_paging(vcpu)
449
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
450
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
451
		kvm_inject_gp(vcpu, 0);
452 453 454 455 456 457
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
458
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
459

460
	vcpu->arch.shadow_efer = efer;
461 462
}

463 464 465 466 467 468 469
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


470 471 472 473 474 475 476 477 478 479
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

480 481 482 483 484 485 486 487
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
	struct kvm_wall_clock wc;
	struct timespec wc_ts;

	if (!wall_clock)
		return;

	version++;

	down_read(&kvm->slots_lock);
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

	wc_ts = current_kernel_time();
	wc.wc_sec = wc_ts.tv_sec;
	wc.wc_nsec = wc_ts.tv_nsec;
	wc.wc_version = version;

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
	up_read(&kvm->slots_lock);
}

static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
	 * state, we just write "2" at the end
	 */
	vcpu->hv_clock.version = 2;

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
		sizeof(vcpu->hv_clock));

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
		       __FUNCTION__, data);
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
			__FUNCTION__, data);
		break;
567 568 569 570
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
			__FUNCTION__, data);
		break;
571 572 573 574 575 576 577 578
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
	case 0x200 ... 0x2ff: /* MTRRs */
		break;
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
579
		vcpu->arch.ia32_misc_enable_msr = data;
580
		break;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		vcpu->arch.hv_clock.tsc_to_system_mul =
					clocksource_khz2mult(tsc_khz, 22);
		vcpu->arch.hv_clock.tsc_shift = 22;

		down_read(&current->mm->mmap_sem);
		down_read(&vcpu->kvm->slots_lock);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&vcpu->kvm->slots_lock);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
619
	default:
620
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
651
	case MSR_IA32_MCG_CTL:
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		/* MTRR registers */
	case 0xfe:
	case 0x200 ... 0x2ff:
		data = 0;
		break;
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
671
		data = vcpu->arch.ia32_misc_enable_msr;
672
		break;
673 674 675 676 677 678
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
679
	case MSR_EFER:
680
		data = vcpu->arch.shadow_efer;
681
		break;
682 683 684 685 686 687
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
688 689 690 691 692 693 694 695 696
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/*
 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
 * cached on it.
 */
void decache_vcpus_on_cpu(int cpu)
{
	struct kvm *vm;
	struct kvm_vcpu *vcpu;
	int i;

	spin_lock(&kvm_lock);
	list_for_each_entry(vm, &vm_list, vm_list)
		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
			vcpu = vm->vcpus[i];
			if (!vcpu)
				continue;
			/*
			 * If the vcpu is locked, then it is running on some
			 * other cpu and therefore it is not cached on the
			 * cpu in question.
			 *
			 * If it's not locked, check the last cpu it executed
			 * on.
			 */
			if (mutex_trylock(&vcpu->mutex)) {
				if (vcpu->cpu == cpu) {
					kvm_x86_ops->vcpu_decache(vcpu);
					vcpu->cpu = -1;
				}
				mutex_unlock(&vcpu->mutex);
			}
		}
	spin_unlock(&kvm_lock);
}

804 805 806 807 808 809 810 811 812 813
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
814
	case KVM_CAP_EXT_CPUID:
815
	case KVM_CAP_CLOCKSOURCE:
816 817
		r = 1;
		break;
818 819 820
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
821 822 823
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
824 825 826
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
827 828 829 830 831 832 833 834
	default:
		r = 0;
		break;
	}
	return r;

}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
887 888 889 890 891 892 893
	default:
		r = -EINVAL;
	}
out:
	return r;
}

894 895 896
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
897
	kvm_write_guest_time(vcpu);
898 899 900 901 902
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
903
	kvm_put_guest_fpu(vcpu);
904 905
}

906
static int is_efer_nx(void)
907 908 909 910
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
911 912 913 914 915 916 917 918
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

919
	entry = NULL;
920 921
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
922 923 924 925 926
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
927
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
928 929 930 931 932
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

933
/* when an old userspace process fills a new kernel module */
934 935 936
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
953 954 955 956 957 958 959 960 961 962 963 964
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
965 966 967 968 969 970 971 972 973 974 975 976
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
977 978 979 980 981 982 983
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
984
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
985
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
986
		goto out;
987
	vcpu->arch.cpuid_nent = cpuid->nent;
988 989 990 991 992 993
	return 0;

out:
	return r;
}

994 995 996 997 998 999 1000
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1001
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1002 1003
		goto out;
	r = -EFAULT;
1004 1005
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1006 1007 1008 1009
		goto out;
	return 0;

out:
1010
	cpuid->nent = vcpu->arch.cpuid_nent;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1093
		int i, cache_type;
1094 1095 1096

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1097 1098
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1099 1100
			if (!cache_type)
				break;
1101 1102
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1103 1104 1105 1106 1107 1108
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1109
		int i, level_type;
1110 1111 1112

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1113 1114
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1115 1116
			if (!level_type)
				break;
1117 1118
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1135
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1176 1177 1178 1179
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1180
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1181 1182 1183 1184 1185 1186 1187 1188 1189
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1190
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1191 1192 1193 1194 1195 1196
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1206 1207
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1208 1209 1210 1211 1212 1213

	vcpu_put(vcpu);

	return 0;
}

1214 1215 1216 1217 1218 1219 1220 1221 1222
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1310 1311 1312 1313 1314 1315
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1344 1345 1346 1347 1348 1349 1350
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1367
	down_write(&kvm->slots_lock);
1368 1369

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1370
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1371

1372
	up_write(&kvm->slots_lock);
1373 1374 1375 1376 1377
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1378
	return kvm->arch.n_alloc_mmu_pages;
1379 1380
}

1381 1382 1383 1384 1385
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1386 1387
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1388 1389 1390 1391 1392 1393 1394
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1421
	down_write(&kvm->slots_lock);
1422

1423
	p = &kvm->arch.aliases[alias->slot];
1424 1425 1426 1427 1428
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1429
		if (kvm->arch.aliases[n - 1].npages)
1430
			break;
1431
	kvm->arch.naliases = n;
1432 1433 1434

	kvm_mmu_zap_all(kvm);

1435
	up_write(&kvm->slots_lock);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1511
	down_write(&kvm->slots_lock);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1527
	up_write(&kvm->slots_lock);
1528 1529 1530
	return r;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1581 1582
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1583 1584
			r = kvm_ioapic_init(kvm);
			if (r) {
1585 1586
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
				goto out;
			}
		} else
			goto out;
		break;
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1604
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
	default:
		;
	}
out:
	return r;
}

1654
static void kvm_init_msr_list(void)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1669 1670 1671 1672 1673 1674 1675 1676
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

1677 1678
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		if (dev->in_range(dev, addr))
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

	dev = vcpu_find_pervcpu_dev(vcpu, addr);
	if (dev == NULL)
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1703
	int r = X86EMUL_CONTINUE;
1704

1705
	down_read(&vcpu->kvm->slots_lock);
1706
	while (bytes) {
1707
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1708 1709 1710 1711
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1712 1713 1714 1715
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1716
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1717 1718 1719 1720
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1721 1722 1723 1724 1725

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1726
out:
1727
	up_read(&vcpu->kvm->slots_lock);
1728
	return r;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1746
	down_read(&vcpu->kvm->slots_lock);
1747
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1748
	up_read(&vcpu->kvm->slots_lock);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1764
	mutex_lock(&vcpu->kvm->lock);
1765 1766 1767
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1768
		mutex_unlock(&vcpu->kvm->lock);
1769 1770
		return X86EMUL_CONTINUE;
	}
1771
	mutex_unlock(&vcpu->kvm->lock);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
			       const void *val, int bytes)
{
	int ret;

1786
	down_read(&vcpu->kvm->slots_lock);
1787
	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1788
	if (ret < 0) {
1789
		up_read(&vcpu->kvm->slots_lock);
1790
		return 0;
1791
	}
1792
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1793
	up_read(&vcpu->kvm->slots_lock);
1794 1795 1796 1797 1798 1799 1800 1801 1802
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1803 1804
	gpa_t                 gpa;

1805
	down_read(&vcpu->kvm->slots_lock);
1806
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1807
	up_read(&vcpu->kvm->slots_lock);
1808 1809

	if (gpa == UNMAPPED_GVA) {
1810
		kvm_inject_page_fault(vcpu, addr, 2);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1825
	mutex_lock(&vcpu->kvm->lock);
1826 1827 1828
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1829
		mutex_unlock(&vcpu->kvm->lock);
1830 1831
		return X86EMUL_CONTINUE;
	}
1832
	mutex_unlock(&vcpu->kvm->lock);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
1876 1877 1878
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
1879
		gpa_t gpa;
1880
		struct page *page;
A
Andrew Morton 已提交
1881
		char *kaddr;
1882 1883
		u64 val;

1884
		down_read(&vcpu->kvm->slots_lock);
1885 1886
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

1887 1888 1889 1890 1891 1892 1893 1894
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
1895 1896

		down_read(&current->mm->mmap_sem);
1897
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1898 1899
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
1900 1901 1902
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
1903
		kvm_release_page_dirty(page);
1904
	emul_write:
1905
		up_read(&vcpu->kvm->slots_lock);
1906 1907 1908
	}
#endif

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
1924
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	static int reported;
	u8 opcodes[4];
1959
	unsigned long rip = vcpu->arch.rip;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	unsigned long rip_linear;

	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

	if (reported)
		return;

	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
	reported = 1;
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

1975
static struct x86_emulate_ops emulate_ops = {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
1986
			int emulation_type)
1987 1988
{
	int r;
1989
	struct decode_cache *c;
1990

1991
	vcpu->arch.mmio_fault_cr2 = cr2;
1992 1993 1994
	kvm_x86_ops->cache_regs(vcpu);

	vcpu->mmio_is_write = 0;
1995
	vcpu->arch.pio.string = 0;
1996

1997
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
1998 1999 2000
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2001 2002 2003 2004
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2005 2006 2007 2008
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2009 2010 2011 2012 2013
		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
			vcpu->arch.emulate_ctxt.cs_base = 0;
			vcpu->arch.emulate_ctxt.ds_base = 0;
			vcpu->arch.emulate_ctxt.es_base = 0;
			vcpu->arch.emulate_ctxt.ss_base = 0;
2014
		} else {
2015
			vcpu->arch.emulate_ctxt.cs_base =
2016
					get_segment_base(vcpu, VCPU_SREG_CS);
2017
			vcpu->arch.emulate_ctxt.ds_base =
2018
					get_segment_base(vcpu, VCPU_SREG_DS);
2019
			vcpu->arch.emulate_ctxt.es_base =
2020
					get_segment_base(vcpu, VCPU_SREG_ES);
2021
			vcpu->arch.emulate_ctxt.ss_base =
2022 2023 2024
					get_segment_base(vcpu, VCPU_SREG_SS);
		}

2025
		vcpu->arch.emulate_ctxt.gs_base =
2026
					get_segment_base(vcpu, VCPU_SREG_GS);
2027
		vcpu->arch.emulate_ctxt.fs_base =
2028 2029
					get_segment_base(vcpu, VCPU_SREG_FS);

2030
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2041
		++vcpu->stat.insn_emulation;
2042
		if (r)  {
2043
			++vcpu->stat.insn_emulation_fail;
2044 2045 2046 2047 2048 2049
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2050
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2051

2052
	if (vcpu->arch.pio.string)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

	kvm_x86_ops->decache_regs(vcpu);
2074
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2085 2086 2087 2088
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2089 2090 2091 2092
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2093 2094 2095 2096 2097
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2098
	void *p = vcpu->arch.pio_data;
2099 2100
	void *q;
	unsigned bytes;
2101
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2102

2103
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2104 2105 2106 2107 2108
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2109 2110 2111
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2112 2113 2114
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2115
	q -= vcpu->arch.pio.guest_page_offset;
2116 2117 2118 2119 2120 2121 2122
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2123
	struct kvm_pio_request *io = &vcpu->arch.pio;
2124 2125 2126 2127 2128 2129 2130
	long delta;
	int r;

	kvm_x86_ops->cache_regs(vcpu);

	if (!io->string) {
		if (io->in)
2131
			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			       io->size);
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
			if (r) {
				kvm_x86_ops->cache_regs(vcpu);
				return r;
			}
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2149
			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2150 2151 2152 2153 2154
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
		if (io->in)
2155
			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2156
		else
2157
			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	}

	kvm_x86_ops->decache_regs(vcpu);

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2175 2176 2177
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2178 2179
				  pd);
	else
2180 2181
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2182 2183 2184 2185 2186 2187 2188
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2189 2190
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
					       gpa_t addr)
{
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2216
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2217
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2218 2219 2220 2221 2222 2223 2224
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2225 2226

	kvm_x86_ops->cache_regs(vcpu);
2227
	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2228 2229 2230 2231 2232 2233
	kvm_x86_ops->decache_regs(vcpu);

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	pio_dev = vcpu_find_pio_dev(vcpu, port);
	if (pio_dev) {
2234
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2254
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2255
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2256 2257 2258 2259 2260 2261 2262
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2288
		kvm_inject_gp(vcpu, 0);
2289 2290 2291
		return 1;
	}
	vcpu->run->io.count = now;
2292
	vcpu->arch.pio.cur_count = now;
2293

2294
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2295 2296 2297
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
2298
		down_read(&vcpu->kvm->slots_lock);
2299
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2300
		vcpu->arch.pio.guest_pages[i] = page;
2301
		up_read(&vcpu->kvm->slots_lock);
2302
		if (!page) {
2303
			kvm_inject_gp(vcpu, 0);
2304 2305 2306 2307 2308 2309
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

	pio_dev = vcpu_find_pio_dev(vcpu, port);
2310
	if (!vcpu->arch.pio.in) {
2311 2312 2313 2314 2315
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2316
			if (vcpu->arch.pio.count == 0)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2328
int kvm_arch_init(void *opaque)
2329
{
2330
	int r;
2331 2332 2333 2334
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2335 2336
		r = -EEXIST;
		goto out;
2337 2338 2339 2340
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2341 2342
		r = -EOPNOTSUPP;
		goto out;
2343 2344 2345
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2346 2347
		r = -EOPNOTSUPP;
		goto out;
2348 2349
	}

2350 2351 2352 2353 2354 2355
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2356
	kvm_x86_ops = ops;
2357
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2358
	return 0;
2359 2360 2361

out:
	return r;
2362
}
2363

2364 2365 2366
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2367 2368
	kvm_mmu_module_exit();
}
2369

2370 2371 2372 2373
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
	if (irqchip_in_kernel(vcpu->kvm)) {
2374
		vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2375
		kvm_vcpu_block(vcpu);
2376
		if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;

	kvm_x86_ops->cache_regs(vcpu);

2392 2393 2394 2395 2396
	nr = vcpu->arch.regs[VCPU_REGS_RAX];
	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2407 2408 2409
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2410 2411 2412 2413
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2414
	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2415
	kvm_x86_ops->decache_regs(vcpu);
A
Amit Shah 已提交
2416
	++vcpu->stat.hypercalls;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->cache_regs(vcpu);
	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2436
	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
	lmsw(vcpu, msw);
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
2474
		return vcpu->arch.cr0;
2475
	case 2:
2476
		return vcpu->arch.cr2;
2477
	case 3:
2478
		return vcpu->arch.cr3;
2479
	case 4:
2480
		return vcpu->arch.cr4;
2481 2482
	case 8:
		return get_cr8(vcpu);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	default:
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
		return 0;
	}
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
	switch (cr) {
	case 0:
2494
		set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2495 2496 2497
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2498
		vcpu->arch.cr2 = val;
2499 2500 2501 2502 2503
		break;
	case 3:
		set_cr3(vcpu, val);
		break;
	case 4:
2504
		set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2505
		break;
2506 2507 2508
	case 8:
		set_cr8(vcpu, val & 0xfUL);
		break;
2509 2510 2511 2512 2513
	default:
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
	}
}

2514 2515
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2516 2517
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2518 2519 2520 2521

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2522
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2546 2547 2548
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2549 2550
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2551 2552

	kvm_x86_ops->cache_regs(vcpu);
2553 2554 2555 2556 2557 2558
	function = vcpu->arch.regs[VCPU_REGS_RAX];
	index = vcpu->arch.regs[VCPU_REGS_RCX];
	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2559
	best = NULL;
2560 2561
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2562 2563 2564
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2576 2577 2578 2579
		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2580 2581 2582 2583 2584
	}
	kvm_x86_ops->decache_regs(vcpu);
	kvm_x86_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2595
	return (!vcpu->arch.irq_summary &&
2596
		kvm_run->request_interrupt_window &&
2597
		vcpu->arch.interrupt_window_open &&
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
	kvm_run->cr8 = get_cr8(vcpu);
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2611 2612
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2613 2614
}

A
Avi Kivity 已提交
2615 2616 2617 2618 2619 2620 2621 2622
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2623
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2624
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2625
	up_read(&current->mm->mmap_sem);
2626 2627

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}

2641 2642 2643 2644
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2645
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2646
		pr_debug("vcpu %d received sipi with vector # %x\n",
2647
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2648 2649 2650 2651
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2652
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2653 2654
	}

A
Avi Kivity 已提交
2655 2656
	vapic_enter(vcpu);

2657 2658 2659 2660 2661
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2662 2663 2664 2665
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2666 2667 2668 2669
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2670 2671 2672
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
			__kvm_migrate_apic_timer(vcpu);
A
Avi Kivity 已提交
2673 2674 2675 2676 2677 2678
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
2679
	}
A
Avi Kivity 已提交
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2690 2691 2692 2693 2694 2695 2696
	if (need_resched()) {
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2697 2698 2699 2700 2701 2702 2703 2704
	if (vcpu->requests)
		if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
			local_irq_enable();
			preempt_enable();
			r = 1;
			goto out;
		}

2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2714
	if (vcpu->arch.exception.pending)
2715 2716
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2717
		kvm_x86_ops->inject_pending_irq(vcpu);
2718
	else
2719 2720
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2721 2722
	kvm_lapic_sync_to_vapic(vcpu);

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	vcpu->guest_mode = 1;
	kvm_guest_enter();

	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);

	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
		kvm_x86_ops->cache_regs(vcpu);
2754
		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2755 2756
	}

2757 2758
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2759

A
Avi Kivity 已提交
2760 2761
	kvm_lapic_sync_from_vapic(vcpu);

2762 2763 2764 2765 2766 2767 2768 2769 2770
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2771
		if (!need_resched())
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
			goto again;
	}

out:
	if (r > 0) {
		kvm_resched(vcpu);
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
2783 2784
	vapic_exit(vcpu);

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2795
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		kvm_vcpu_block(vcpu);
		vcpu_put(vcpu);
		return -EAGAIN;
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
		set_cr8(vcpu, kvm_run->cr8);

2808
	if (vcpu->arch.pio.cur_count) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
		r = emulate_instruction(vcpu, kvm_run,
2819 2820
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
		kvm_x86_ops->cache_regs(vcpu);
2832
		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		kvm_x86_ops->decache_regs(vcpu);
	}

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

	kvm_x86_ops->cache_regs(vcpu);

2852 2853 2854 2855 2856 2857 2858 2859
	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2860
#ifdef CONFIG_X86_64
2861 2862 2863 2864 2865 2866 2867 2868
	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2869 2870
#endif

2871
	regs->rip = vcpu->arch.rip;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

2889 2890 2891 2892 2893 2894 2895 2896
	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2897
#ifdef CONFIG_X86_64
2898 2899 2900 2901 2902 2903 2904 2905
	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2906 2907
#endif

2908
	vcpu->arch.rip = regs->rip;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);

	kvm_x86_ops->decache_regs(vcpu);

	vcpu_put(vcpu);

	return 0;
}

static void get_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
2921
	kvm_x86_ops->get_segment(vcpu, var, seg);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

	get_segment(vcpu, &cs, VCPU_SREG_CS);
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

	get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2960 2961 2962 2963
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
2964
	sregs->cr8 = get_cr8(vcpu);
2965
	sregs->efer = vcpu->arch.shadow_efer;
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
2976
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

static void set_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
2987
	kvm_x86_ops->set_segment(vcpu, var, seg);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3006 3007 3008
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3009 3010 3011

	set_cr8(vcpu, sregs->cr8);

3012
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3013 3014 3015 3016 3017
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3018
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3019
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3020
	vcpu->arch.cr0 = sregs->cr0;
3021

3022
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3023 3024
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3025
		load_pdptrs(vcpu, vcpu->arch.cr3);
3026 3027 3028 3029 3030

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3031 3032 3033 3034 3035 3036
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

	set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3110
	down_read(&vcpu->kvm->slots_lock);
3111
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3112
	up_read(&vcpu->kvm->slots_lock);
3113 3114 3115 3116 3117 3118 3119 3120 3121
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3122 3123
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3124
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3144
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3168
	fx_save(&vcpu->arch.host_fx_image);
3169
	fpu_init();
3170 3171
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
3172 3173
	preempt_enable();

3174
	vcpu->arch.cr0 |= X86_CR0_ET;
3175
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3176 3177
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3188 3189
	fx_save(&vcpu->arch.host_fx_image);
	fx_restore(&vcpu->arch.guest_fx_image);
3190 3191 3192 3193 3194 3195 3196 3197 3198
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3199 3200
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3201
	++vcpu->stat.fpu_reload;
3202 3203
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3204 3205 3206 3207 3208 3209 3210 3211 3212

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3213 3214
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3215

3216 3217 3218
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3219 3220

	/* We do fxsave: this must be aligned. */
3221
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3222 3223 3224 3225 3226 3227 3228 3229 3230

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3231
	return 0;
3232 3233
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3234
	return r;
3235 3236
}

3237
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3285
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3286
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3287
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3288
	else
3289
		vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3290 3291 3292 3293 3294 3295

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3296
	vcpu->arch.pio_data = page_address(page);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3313
	free_page((unsigned long)vcpu->arch.pio_data);
3314 3315 3316 3317 3318 3319 3320 3321
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
	kvm_mmu_destroy(vcpu);
3322
	free_page((unsigned long)vcpu->arch.pio_data);
3323
}
3324 3325 3326 3327 3328 3329 3330 3331

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3332
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
3365 3366
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3367 3368 3369 3370
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
	kfree(kvm);
}
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
3385
			down_write(&current->mm->mmap_sem);
3386 3387 3388 3389 3390
			memslot->userspace_addr = do_mmap(NULL, 0,
						     npages * PAGE_SIZE,
						     PROT_READ | PROT_WRITE,
						     MAP_SHARED | MAP_ANONYMOUS,
						     0);
3391
			up_write(&current->mm->mmap_sem);
3392 3393 3394 3395 3396 3397 3398

			if (IS_ERR((void *)memslot->userspace_addr))
				return PTR_ERR((void *)memslot->userspace_addr);
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

3399
				down_write(&current->mm->mmap_sem);
3400 3401
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
3402
				up_write(&current->mm->mmap_sem);
3403 3404 3405 3406 3407 3408 3409 3410
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

3411
	if (!kvm->arch.n_requested_mmu_pages) {
3412 3413 3414 3415 3416 3417 3418 3419 3420
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
3421 3422 3423 3424 3425 3426

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
}
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
	if (vcpu->guest_mode)
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
}