fec.c 55.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
39 40
#include <linux/io.h>
#include <linux/irq.h>
41
#include <linux/clk.h>
42
#include <linux/platform_device.h>
L
Linus Torvalds 已提交
43

44
#include <asm/cacheflush.h>
45 46

#ifndef CONFIG_ARCH_MXC
L
Linus Torvalds 已提交
47 48
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
49
#endif
50

L
Linus Torvalds 已提交
51 52
#include "fec.h"

53 54 55 56 57 58 59
#ifdef CONFIG_ARCH_MXC
#include <mach/hardware.h>
#define FEC_ALIGNMENT	0xf
#else
#define FEC_ALIGNMENT	0x3
#endif

60 61 62
/*
 * Define the fixed address of the FEC hardware.
 */
63
#if defined(CONFIG_M5272)
64
#define HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
80 81 82 83
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
84 85 86
#else
#define	FEC_FLASHMAC	0
#endif
87
#endif /* CONFIG_M5272 */
88

L
Linus Torvalds 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

122
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
123
#error "FEC: descriptor ring size constants too large"
124 125
#endif

L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
147
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
148 149 150
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
151
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
152
    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
170 171
	struct net_device *netdev;

172 173
	struct clk *clk;

L
Linus Torvalds 已提交
174 175 176 177 178 179 180 181
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
182
	dma_addr_t	bd_dma;
L
Linus Torvalds 已提交
183 184 185 186 187
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
188 189 190 191
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
192 193 194 195 196

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
197
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
215
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
236 237 238 239
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
240

241
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
262
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
263 264 265 266 267 268 269 270 271 272 273
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
274
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
275
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
276
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
277 278 279 280 281 282

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
283
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
284
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
285
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
294
	unsigned short	status;
295
	unsigned long flags;
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303 304

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

305
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
306 307 308
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

309
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
310
#ifndef final_version
311
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
312 313 314 315
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
316
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
317 318 319 320 321 322
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
323
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
324 325 326 327 328 329 330 331 332 333 334

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
335
	if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
L
Linus Torvalds 已提交
336 337
		unsigned int index;
		index = bdp - fep->tx_bd_base;
338
		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
L
Linus Torvalds 已提交
339 340 341 342 343 344 345
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

346
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
347
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
348

L
Linus Torvalds 已提交
349 350 351
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
352 353
	dma_sync_single(NULL, bdp->cbd_bufaddr,
			bdp->cbd_datlen, DMA_TO_DEVICE);
L
Linus Torvalds 已提交
354

355 356
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
357 358
	 */

359
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
360
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
361
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
362 363 364 365

	dev->trans_start = jiffies;

	/* Trigger transmission start */
366
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
367 368 369

	/* If this was the last BD in the ring, start at the beginning again.
	*/
370
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
371 372 373 374 375 376 377 378 379 380 381 382
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

383
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392 393

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
394
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
408
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
428
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
429 430 431 432 433 434 435
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
436
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
437 438 439 440
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
441
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
442 443 444 445 446

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
447 448
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
449 450 451 452 453
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
454
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
463
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
464 465 466 467
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
468
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
469 470
			fec_enet_mii(dev);
		}
471

472 473 474
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
475 476 477 478 479 480 481 482
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
483
	unsigned short status;
L
Linus Torvalds 已提交
484 485 486
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
487
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
488 489
	bdp = fep->dirty_tx;

490
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
491 492 493 494
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
495
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
496 497
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
498
			dev->stats.tx_errors++;
499
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
500
				dev->stats.tx_heartbeat_errors++;
501
			if (status & BD_ENET_TX_LC)  /* Late collision */
502
				dev->stats.tx_window_errors++;
503
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
504
				dev->stats.tx_aborted_errors++;
505
			if (status & BD_ENET_TX_UN)  /* Underrun */
506
				dev->stats.tx_fifo_errors++;
507
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
508
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
509
		} else {
510
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
511 512 513
		}

#ifndef final_version
514
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
515 516 517 518 519
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
520
		if (status & BD_ENET_TX_DEF)
521
			dev->stats.collisions++;
522

L
Linus Torvalds 已提交
523 524 525 526 527
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
528

L
Linus Torvalds 已提交
529 530
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
531
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
532 533 534
			bdp = fep->tx_bd_base;
		else
			bdp++;
535

L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543 544 545
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
546
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
561
	unsigned short status;
L
Linus Torvalds 已提交
562 563 564
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
565

566 567
#ifdef CONFIG_M532x
	flush_cache_all();
568
#endif
L
Linus Torvalds 已提交
569 570 571 572

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

573 574
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
575 576 577 578 579
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

580
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
581 582 583 584 585

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
586
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
587 588 589 590 591 592 593
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
594
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
595
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
596
		dev->stats.rx_errors++;
597
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
598
		/* Frame too long or too short. */
599
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
600
		}
601
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
602
			dev->stats.rx_frame_errors++;
603
		if (status & BD_ENET_RX_CR)	/* CRC Error */
604
			dev->stats.rx_crc_errors++;
605
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
606
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
607 608 609 610 611 612
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
613
	if (status & BD_ENET_RX_CL) {
614 615
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
616 617 618 619 620
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
621
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
622
	pkt_len = bdp->cbd_datlen;
623
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
624 625
	data = (__u8*)__va(bdp->cbd_bufaddr);

626 627 628
	dma_sync_single(NULL, (unsigned long)__pa(data),
			pkt_len - 4, DMA_FROM_DEVICE);

L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636 637
	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
638
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
639 640
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
641
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
642 643 644 645 646 647 648
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
649
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
650 651 652

	/* Mark the buffer empty.
	*/
653 654
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
655 656 657

	/* Update BD pointer to next entry.
	*/
658
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
659 660 661
		bdp = fep->rx_bd_base;
	else
		bdp++;
662

L
Linus Torvalds 已提交
663 664 665 666 667
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
668
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
669
#endif
670
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
671 672 673 674 675 676 677 678 679 680
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
681
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
682
#endif
683 684

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
685 686 687
}


688
/* called from interrupt context */
L
Linus Torvalds 已提交
689 690 691 692 693 694 695 696 697
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
698 699
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
700 701
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
702

L
Linus Torvalds 已提交
703 704
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
705
		goto unlock;
L
Linus Torvalds 已提交
706 707 708 709 710 711 712 713 714 715 716
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
717 718

unlock:
719
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
733
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
734

735
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
746
		} else {
L
Linus Torvalds 已提交
747 748 749
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
750
	} else {
L
Linus Torvalds 已提交
751 752 753
		retval = 1;
	}

754 755
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
756 757 758 759 760 761 762
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

763 764
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
765 766 767 768 769 770
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
771
	uint status;
L
Linus Torvalds 已提交
772

773
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
774 775

	if (mii_reg & 0x0004)
776
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
777
	if (mii_reg & 0x0010)
778
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
779
	if (mii_reg & 0x0020)
780 781
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
782 783 784 785 786 787
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
788
	uint status;
L
Linus Torvalds 已提交
789

790
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
791 792

	if (mii_reg & 0x1000)
793
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
794
	if (mii_reg & 0x4000)
795 796
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
797 798 799 800 801 802
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
803
	uint status;
L
Linus Torvalds 已提交
804

805
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
806 807

	if (mii_reg & 0x0020)
808
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
809
	if (mii_reg & 0x0040)
810
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
811
	if (mii_reg & 0x0080)
812
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
813
	if (mii_reg & 0x00100)
814 815
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
831
	uint status;
L
Linus Torvalds 已提交
832

833
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
834 835
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
836
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
837
		else
838
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
839 840
	} else {
		if (mii_reg & 0x1000)
841
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
842
		else
843
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
844
	}
845
	*s = status;
L
Linus Torvalds 已提交
846 847
}

848
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
849 850 851
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
852 853
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
854 855 856
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
857 858
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
859 860 861 862 863 864 865
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
866 867
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
868 869
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
870 871
	};
static phy_info_t const phy_info_lxt970 = {
872
	.id = 0x07810000,
873 874 875 876 877
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
878
};
879

L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889 890 891
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

892
/*
L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
902
	uint status;
L
Linus Torvalds 已提交
903

904
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
905 906 907

	if (mii_reg & 0x0400) {
		fep->link = 1;
908
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
909 910 911 912
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
913
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
914 915
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
916
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
917
		else
918
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
919 920
	} else {
		if (mii_reg & 0x0200)
921
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
922
		else
923
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
924 925
	}
	if (mii_reg & 0x0008)
926
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
927

928 929
	*s = status;
}
930

931
static phy_cmd_t const phy_cmd_lxt971_config[] = {
932
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
933 934 935 936 937
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
938 939
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
940 941 942 943 944 945
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
946
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
947
		{ mk_mii_end, }
948 949 950 951
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
952 953 954 955
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
956 957
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
958 959
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
960 961
	};
static phy_info_t const phy_info_lxt971 = {
962
	.id = 0x0001378e,
963 964 965 966 967
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
986
	uint status;
L
Linus Torvalds 已提交
987

988
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
989 990

	switch((mii_reg >> 2) & 7) {
991 992 993 994
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
995 996
}

997 998 999 1000
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1001
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1002 1003 1004 1005 1006 1007 1008 1009
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1010 1011
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1012 1013 1014
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1015 1016
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1025 1026
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1027 1028
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1029 1030
	};
static phy_info_t const phy_info_qs6612 = {
1031
	.id = 0x00181440,
1032 1033 1034 1035 1036
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1056
	uint status;
L
Linus Torvalds 已提交
1057

1058
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1059 1060

	if (mii_reg & 0x0080)
1061
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1062
	if (mii_reg & 0x0400)
1063
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1064
	else
1065 1066 1067
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1068 1069
}

1070
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1071 1072 1073 1074
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1075 1076
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1077 1078
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1079
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1080
		{ mk_mii_end, }
1081 1082
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1089 1090
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1091 1092
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1093 1094 1095 1096 1097 1098 1099 1100
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1101 1102
};

1103

L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
1110
#define MII_KS8721BL_ICSR	27
L
Linus Torvalds 已提交
1111 1112
#define	MII_KS8721BL_PHYCR	31

1113
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1114 1115 1116
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1117 1118
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1119 1120
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1121
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1122
		{ mk_mii_end, }
1123 1124
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1130 1131
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1132 1133
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1134 1135
	};
static phy_info_t const phy_info_ks8721bl = {
1136
	.id = 0x00022161,
1137 1138 1139 1140 1141
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1142 1143
};

1144 1145 1146 1147 1148 1149 1150
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1151
	struct fec_enet_private *fep = netdev_priv(dev);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1203 1204
/* ------------------------------------------------------------------------- */

1205
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1206 1207 1208 1209 1210
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1211
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1212 1213 1214 1215
	NULL
};

/* ------------------------------------------------------------------------- */
1216
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1217
static irqreturn_t
1218
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1219 1220

/*
1221
 *	This is specific to the MII interrupt setup of the M5272EVB.
L
Linus Torvalds 已提交
1222
 */
1223
static void __inline__ fec_request_mii_intr(struct net_device *dev)
L
Linus Torvalds 已提交
1224
{
1225 1226
	if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
		printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1233
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239 1240
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1241
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1242 1243
}

1244
#ifdef CONFIG_M5272
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1258
		iap = (unsigned char *)FEC_FLASHMAC;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
1275
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1276
}
L
Linus Torvalds 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1317
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1318
{
G
Greg Ungerer 已提交
1319 1320
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1321
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326 1327 1328 1329

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1330
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1331 1332 1333 1334
		printk("on");
	else
		printk("off");

1335
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1336
		printk(", 100FDX");
1337
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1338
		printk(", 100HDX");
1339
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1340
		printk(", 10FDX");
1341
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1342
		printk(", 10HDX");
1343
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1344 1345
		printk(", No speed/duplex selected?");

1346
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1347
		printk(", loopback enabled");
1348

L
Linus Torvalds 已提交
1349 1350 1351 1352 1353
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1354
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1355
{
G
Greg Ungerer 已提交
1356 1357
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1371
		if (fep->phy_status
L
Linus Torvalds 已提交
1372 1373 1374
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1375
	} else
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1400
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1401 1402 1403
	schedule_work(&fep->phy_task);
}

1404
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409 1410 1411 1412
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1413
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1414 1415 1416
	schedule_work(&fep->phy_task);
}

1417 1418 1419 1420 1421 1422 1423 1424
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
1447

L
Linus Torvalds 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1467

L
Linus Torvalds 已提交
1468 1469 1470 1471 1472
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
1473
		} else {
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
1482
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1483
		fec_disable_phy_intr();
1484
#endif
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
1490
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1491
static irqreturn_t
1492
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
1508
#endif
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

1528 1529 1530 1531 1532 1533
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
1604 1605
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
1606 1607 1608
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
1609 1610
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
1611

L
Linus Torvalds 已提交
1612 1613 1614 1615 1616 1617 1618 1619
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
1620

L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1639

L
Linus Torvalds 已提交
1640
				if (hash > 31)
1641
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
1642
				else
1643
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

1656
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
1657 1658

	/* Set station address. */
1659 1660 1661 1662
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667

}

 /*
  * XXX:  We need to clean up on failure exits here.
1668 1669
  *
  * index is only used in legacy code
L
Linus Torvalds 已提交
1670
  */
1671
int __init fec_enet_init(struct net_device *dev, int index)
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;

1680 1681
	/* Allocate memory for buffer descriptors.
	*/
1682 1683
	mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
			&fep->bd_dma, GFP_KERNEL);
1684 1685 1686 1687 1688
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

1689 1690 1691
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
1692 1693
	/* Create an Ethernet device instance.
	*/
1694
	fecp = (volatile fec_t *)dev->base_addr;
L
Linus Torvalds 已提交
1695 1696 1697

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
1698
	fep->netdev = dev;
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

1705
	/* Set the Ethernet address */
1706
#ifdef CONFIG_M5272
L
Linus Torvalds 已提交
1707
	fec_get_mac(dev);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
#else
	{
		unsigned long l;
		l = fecp->fec_addr_low;
		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
		l = fecp->fec_addr_high;
		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
	}
#endif
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	cbd_base = (cbd_t *)mem_addr;

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
1786 1787 1788
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
1789

1790 1791
#ifdef HAVE_mii_link_interrupt
	fec_request_mii_intr(dev);
1792
#endif
L
Linus Torvalds 已提交
1793

1794 1795
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
1796 1797
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
1798
	fecp->fec_r_des_active = 0;
1799 1800 1801 1802
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
1803

L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
					/ 2500000) / 2) & 0x3F) << 1;
	fecp->fec_mii_speed = fep->phy_speed;
	fec_restart(dev, 0);
L
Linus Torvalds 已提交
1827

1828 1829
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
1830
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
1831

L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
1864
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
1865 1866 1867

	/* Set station address.
	*/
1868
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
1869 1870 1871

	/* Reset all multicast.
	*/
1872 1873
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	/* Set receive and transmit descriptor base.
	*/
1881 1882 1883
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
1936
	} else {
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
1950 1951 1952 1953
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
1954
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static int __devinit
fec_probe(struct platform_device *pdev)
{
	struct fec_enet_private *fep;
	struct net_device *ndev;
	int i, irq, ret = 0;
	struct resource *r;

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!r)
		return -ENXIO;

	r = request_mem_region(r->start, resource_size(r), pdev->name);
	if (!r)
		return -EBUSY;

	/* Init network device */
	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
	if (!ndev)
		return -ENOMEM;

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* setup board info structure */
	fep = netdev_priv(ndev);
	memset(fep, 0, sizeof(*fep));

	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));

	if (!ndev->base_addr) {
		ret = -ENOMEM;
		goto failed_ioremap;
	}

	platform_set_drvdata(pdev, ndev);

	/* This device has up to three irqs on some platforms */
	for (i = 0; i < 3; i++) {
		irq = platform_get_irq(pdev, i);
		if (i && irq < 0)
			break;
		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
		if (ret) {
			while (i >= 0) {
				irq = platform_get_irq(pdev, i);
				free_irq(irq, ndev);
				i--;
			}
			goto failed_irq;
		}
	}

	fep->clk = clk_get(&pdev->dev, "fec_clk");
	if (IS_ERR(fep->clk)) {
		ret = PTR_ERR(fep->clk);
		goto failed_clk;
	}
	clk_enable(fep->clk);

	ret = fec_enet_init(ndev, 0);
	if (ret)
		goto failed_init;

	ret = register_netdev(ndev);
	if (ret)
		goto failed_register;

	return 0;

failed_register:
failed_init:
	clk_disable(fep->clk);
	clk_put(fep->clk);
failed_clk:
	for (i = 0; i < 3; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq > 0)
			free_irq(irq, ndev);
	}
failed_irq:
	iounmap((void __iomem *)ndev->base_addr);
failed_ioremap:
	free_netdev(ndev);

	return ret;
}

static int __devexit
fec_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct fec_enet_private *fep = netdev_priv(ndev);

	platform_set_drvdata(pdev, NULL);

	fec_stop(ndev);
	clk_disable(fep->clk);
	clk_put(fep->clk);
	iounmap((void __iomem *)ndev->base_addr);
	unregister_netdev(ndev);
	free_netdev(ndev);
	return 0;
}

static int
fec_suspend(struct platform_device *dev, pm_message_t state)
{
	struct net_device *ndev = platform_get_drvdata(dev);
	struct fec_enet_private *fep;

	if (ndev) {
		fep = netdev_priv(ndev);
		if (netif_running(ndev)) {
			netif_device_detach(ndev);
			fec_stop(ndev);
		}
	}
	return 0;
}

static int
fec_resume(struct platform_device *dev)
{
	struct net_device *ndev = platform_get_drvdata(dev);

	if (ndev) {
		if (netif_running(ndev)) {
			fec_enet_init(ndev, 0);
			netif_device_attach(ndev);
		}
	}
	return 0;
}

static struct platform_driver fec_driver = {
	.driver	= {
		.name    = "fec",
		.owner	 = THIS_MODULE,
	},
	.probe   = fec_probe,
	.remove  = __devexit_p(fec_drv_remove),
	.suspend = fec_suspend,
	.resume  = fec_resume,
};

static int __init
fec_enet_module_init(void)
{
	printk(KERN_INFO "FEC Ethernet Driver\n");

	return platform_driver_register(&fec_driver);
}

static void __exit
fec_enet_cleanup(void)
{
	platform_driver_unregister(&fec_driver);
}

module_exit(fec_enet_cleanup);
L
Linus Torvalds 已提交
2150 2151 2152
module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");