fec.c 63.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
39 40
#include <linux/io.h>
#include <linux/irq.h>
41
#include <linux/clk.h>
L
Linus Torvalds 已提交
42

43
#include <asm/cacheflush.h>
44 45

#ifndef CONFIG_ARCH_MXC
L
Linus Torvalds 已提交
46 47
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
48
#endif
49

L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include "fec.h"

#if defined(CONFIG_FEC2)
#define	FEC_MAX_PORTS	2
#else
#define	FEC_MAX_PORTS	1
#endif

58 59 60 61 62 63 64
#ifdef CONFIG_ARCH_MXC
#include <mach/hardware.h>
#define FEC_ALIGNMENT	0xf
#else
#define FEC_ALIGNMENT	0x3
#endif

65
#if defined(CONFIG_M5272)
66 67 68
#define HAVE_mii_link_interrupt
#endif

L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77
/*
 * Define the fixed address of the FEC hardware.
 */
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
	(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
	(MCF_MBAR + 0x1000),
	(MCF_MBAR + 0x1800),
78
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
79
	(MCF_MBAR + 0x1000),
80 81
#elif defined(CONFIG_M520x)
	(MCF_MBAR+0x30000),
82 83
#elif defined(CONFIG_M532x)
	(MCF_MBAR+0xfc030000),
L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#endif
};

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
101 102 103 104
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#else
#define	FEC_FLASHMAC	0
#endif

/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

142
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
143
#error "FEC: descriptor ring size constants too large"
144 145
#endif

L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
167
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
168 169 170
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
171
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
172
    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
L
Linus Torvalds 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
190 191
	struct net_device *netdev;

L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
200
	dma_addr_t	bd_dma;
L
Linus Torvalds 已提交
201 202 203 204 205
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
206 207 208 209
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
210 211 212 213 214

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
215
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
233
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
254 255 256 257
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
258

259
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
280
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
281 282 283 284 285 286 287 288 289 290 291
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
292
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
293
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
294
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
295 296 297 298 299 300

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
301
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
302
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
303
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
312
	unsigned short	status;
313
	unsigned long flags;
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

323
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
324 325 326
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

327
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
328
#ifndef final_version
329
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
330 331 332 333
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
334
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
335 336 337 338 339 340
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
341
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349 350 351 352

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
353
	if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
L
Linus Torvalds 已提交
354 355
		unsigned int index;
		index = bdp - fep->tx_bd_base;
356
		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
L
Linus Torvalds 已提交
357 358 359 360 361 362 363
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

364
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
365
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
366

L
Linus Torvalds 已提交
367 368 369
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
370 371
	dma_sync_single(NULL, bdp->cbd_bufaddr,
			bdp->cbd_datlen, DMA_TO_DEVICE);
L
Linus Torvalds 已提交
372

373 374
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
375 376
	 */

377
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
378
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
379
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
380 381 382 383

	dev->trans_start = jiffies;

	/* Trigger transmission start */
384
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
385 386 387

	/* If this was the last BD in the ring, start at the beginning again.
	*/
388
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

401
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
402 403 404 405 406 407 408 409 410 411

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
412
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
426
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
446
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
447 448 449 450 451 452 453
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
454
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
455 456 457 458
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
459
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
460 461 462 463 464

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
465 466
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
467 468 469 470 471
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
472
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
481
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
482 483 484 485
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
486
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
487 488
			fec_enet_mii(dev);
		}
489

490 491 492
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
501
	unsigned short status;
L
Linus Torvalds 已提交
502 503 504
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
505
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
506 507
	bdp = fep->dirty_tx;

508
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
509 510 511 512
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
513
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
514 515
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
516
			dev->stats.tx_errors++;
517
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
518
				dev->stats.tx_heartbeat_errors++;
519
			if (status & BD_ENET_TX_LC)  /* Late collision */
520
				dev->stats.tx_window_errors++;
521
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
522
				dev->stats.tx_aborted_errors++;
523
			if (status & BD_ENET_TX_UN)  /* Underrun */
524
				dev->stats.tx_fifo_errors++;
525
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
526
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
527
		} else {
528
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
529 530 531
		}

#ifndef final_version
532
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
533 534 535 536 537
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
538
		if (status & BD_ENET_TX_DEF)
539
			dev->stats.collisions++;
540

L
Linus Torvalds 已提交
541 542 543 544 545
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
546

L
Linus Torvalds 已提交
547 548
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
549
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
550 551 552
			bdp = fep->tx_bd_base;
		else
			bdp++;
553

L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
564
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
579
	unsigned short status;
L
Linus Torvalds 已提交
580 581 582
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
583

584 585
#ifdef CONFIG_M532x
	flush_cache_all();
586
#endif
L
Linus Torvalds 已提交
587 588 589 590

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

591 592
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
593 594 595 596 597
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

598
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
599 600 601 602 603

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
604
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
605 606 607 608 609 610 611
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
612
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
613
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
614
		dev->stats.rx_errors++;
615
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
616
		/* Frame too long or too short. */
617
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
618
		}
619
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
620
			dev->stats.rx_frame_errors++;
621
		if (status & BD_ENET_RX_CR)	/* CRC Error */
622
			dev->stats.rx_crc_errors++;
623
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
624
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
625 626 627 628 629 630
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
631
	if (status & BD_ENET_RX_CL) {
632 633
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
634 635 636 637 638
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
639
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
640
	pkt_len = bdp->cbd_datlen;
641
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
642 643
	data = (__u8*)__va(bdp->cbd_bufaddr);

644 645 646
	dma_sync_single(NULL, (unsigned long)__pa(data),
			pkt_len - 4, DMA_FROM_DEVICE);

L
Linus Torvalds 已提交
647 648 649 650 651 652 653 654 655
	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
656
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
657 658
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
659
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
660 661 662 663 664 665 666
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
667
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
668 669 670

	/* Mark the buffer empty.
	*/
671 672
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
673 674 675

	/* Update BD pointer to next entry.
	*/
676
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
677 678 679
		bdp = fep->rx_bd_base;
	else
		bdp++;
680

L
Linus Torvalds 已提交
681 682 683 684 685
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
686
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
687
#endif
688
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
689 690 691 692 693 694 695 696 697 698
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
699
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
700
#endif
701 702

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
703 704 705
}


706
/* called from interrupt context */
L
Linus Torvalds 已提交
707 708 709 710 711 712 713 714 715
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
716 717
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
718 719
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
720

L
Linus Torvalds 已提交
721 722
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
723
		goto unlock;
L
Linus Torvalds 已提交
724 725 726 727 728 729 730 731 732 733 734
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
735 736

unlock:
737
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
751
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
752

753
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
754 755 756 757 758 759 760 761 762 763
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
764
		} else {
L
Linus Torvalds 已提交
765 766 767
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
768
	} else {
L
Linus Torvalds 已提交
769 770 771
		retval = 1;
	}

772 773
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
774 775 776 777 778 779 780
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

781 782
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
783 784 785 786 787 788
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
789
	uint status;
L
Linus Torvalds 已提交
790

791
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
792 793

	if (mii_reg & 0x0004)
794
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
795
	if (mii_reg & 0x0010)
796
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
797
	if (mii_reg & 0x0020)
798 799
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
800 801 802 803 804 805
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
806
	uint status;
L
Linus Torvalds 已提交
807

808
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
809 810

	if (mii_reg & 0x1000)
811
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
812
	if (mii_reg & 0x4000)
813 814
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
815 816 817 818 819 820
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
821
	uint status;
L
Linus Torvalds 已提交
822

823
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
824 825

	if (mii_reg & 0x0020)
826
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
827
	if (mii_reg & 0x0040)
828
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
829
	if (mii_reg & 0x0080)
830
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
831
	if (mii_reg & 0x00100)
832 833
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
849
	uint status;
L
Linus Torvalds 已提交
850

851
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
852 853
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
854
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
855
		else
856
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
857 858
	} else {
		if (mii_reg & 0x1000)
859
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
860
		else
861
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
862
	}
863
	*s = status;
L
Linus Torvalds 已提交
864 865
}

866
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
867 868 869
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
870 871
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
872 873 874
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
875 876
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
877 878 879 880 881 882 883
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
884 885
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
886 887
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
888 889
	};
static phy_info_t const phy_info_lxt970 = {
890
	.id = 0x07810000,
891 892 893 894 895
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
896
};
897

L
Linus Torvalds 已提交
898 899 900 901 902 903 904 905 906 907 908 909
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

910
/*
L
Linus Torvalds 已提交
911 912 913 914 915 916 917 918 919
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
920
	uint status;
L
Linus Torvalds 已提交
921

922
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
923 924 925

	if (mii_reg & 0x0400) {
		fep->link = 1;
926
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
927 928 929 930
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
931
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
932 933
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
934
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
935
		else
936
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
937 938
	} else {
		if (mii_reg & 0x0200)
939
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
940
		else
941
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
942 943
	}
	if (mii_reg & 0x0008)
944
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
945

946 947
	*s = status;
}
948

949
static phy_cmd_t const phy_cmd_lxt971_config[] = {
950
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
951 952 953 954 955
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
956 957
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
958 959 960 961 962 963
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
964
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
965
		{ mk_mii_end, }
966 967 968 969
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
970 971 972 973
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
974 975
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
976 977
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
978 979
	};
static phy_info_t const phy_info_lxt971 = {
980
	.id = 0x0001378e,
981 982 983 984 985
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1004
	uint status;
L
Linus Torvalds 已提交
1005

1006
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
1007 1008

	switch((mii_reg >> 2) & 7) {
1009 1010 1011 1012
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
1013 1014
}

1015 1016 1017 1018
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1019
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1020 1021 1022 1023 1024 1025 1026 1027
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1028 1029
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1030 1031 1032
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1033 1034
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1035 1036 1037 1038 1039 1040 1041 1042
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1043 1044
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1045 1046
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1047 1048
	};
static phy_info_t const phy_info_qs6612 = {
1049
	.id = 0x00181440,
1050 1051 1052 1053 1054
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1074
	uint status;
L
Linus Torvalds 已提交
1075

1076
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1077 1078

	if (mii_reg & 0x0080)
1079
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1080
	if (mii_reg & 0x0400)
1081
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1082
	else
1083 1084 1085
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1086 1087
}

1088
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1089 1090 1091 1092
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1093 1094
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1095 1096
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1097
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1098
		{ mk_mii_end, }
1099 1100
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1107 1108
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1109 1110
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1111 1112 1113 1114 1115 1116 1117 1118
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1119 1120
};

1121

L
Linus Torvalds 已提交
1122 1123 1124 1125 1126 1127
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
1128
#define MII_KS8721BL_ICSR	27
L
Linus Torvalds 已提交
1129 1130
#define	MII_KS8721BL_PHYCR	31

1131
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1132 1133 1134
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1135 1136
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1137 1138
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1139
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1140
		{ mk_mii_end, }
1141 1142
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1143 1144 1145 1146 1147
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1148 1149
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1150 1151
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1152 1153
	};
static phy_info_t const phy_info_ks8721bl = {
1154
	.id = 0x00022161,
1155 1156 1157 1158 1159
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1160 1161
};

1162 1163 1164 1165 1166 1167 1168
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1169
	struct fec_enet_private *fep = netdev_priv(dev);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1221 1222
/* ------------------------------------------------------------------------- */

1223
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1224 1225 1226 1227 1228
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1229
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1230 1231 1232 1233
	NULL
};

/* ------------------------------------------------------------------------- */
1234
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1235
static irqreturn_t
1236
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
#endif

#if defined(CONFIG_M5272)
/*
 *	Code specific to Coldfire 5272 setup.
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile unsigned long *icrp;
1246 1247 1248
	static const struct idesc {
		char *name;
		unsigned short irq;
1249
		irq_handler_t handler;
1250 1251 1252 1253 1254 1255 1256
	} *idp, id[] = {
		{ "fec(RX)", 86, fec_enet_interrupt },
		{ "fec(TX)", 87, fec_enet_interrupt },
		{ "fec(OTHER)", 88, fec_enet_interrupt },
		{ "fec(MII)", 66, mii_link_interrupt },
		{ NULL },
	};
L
Linus Torvalds 已提交
1257 1258

	/* Setup interrupt handlers. */
1259
	for (idp = id; idp->name; idp++) {
1260
		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1261 1262
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
	}
L
Linus Torvalds 已提交
1263 1264 1265 1266 1267

	/* Unmask interrupt at ColdFire 5272 SIM */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
	*icrp = 0x00000ddd;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1268
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5272 manual section 11.5.8: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1293
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1294 1295 1296

	fecp = fep->hwp;

1297
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1298 1299 1300 1301
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1302
		iap = (unsigned char *)FEC_FLASHMAC;
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1315
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1316 1317

	/* Adjust MAC if using default MAC address */
1318 1319
	if (iap == fec_mac_default)
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1326
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331 1332 1333
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1334
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1335 1336 1337 1338
}

/* ------------------------------------------------------------------------- */

1339
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
1340 1341

/*
1342 1343
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
1349 1350 1351 1352 1353 1354 1355 1356 1357
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
1363
	for (idp = id; idp->name; idp++) {
1364
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1365 1366
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371

	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;
1372
		int i, ilip;
L
Linus Torvalds 已提交
1373 1374 1375 1376

		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
			MCFINTC_ICR0);
1377 1378
		for (i = 23, ilip = 0x28; (i < 36); i++)
			icrp[i] = ilip--;
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRH);
		*imrp &= ~0x0000000f;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRL);
		*imrp &= ~0xff800001;
	}

#if defined(CONFIG_M528x)
	/* Set up gpio outputs for MII lines */
	{
1391 1392
		volatile u16 *gpio_paspar;
		volatile u8 *gpio_pehlpar;
1393

1394 1395 1396 1397
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
		*gpio_paspar |= 0x0f00;
		*gpio_pehlpar = 0xc0;
L
Linus Torvalds 已提交
1398 1399
	}
#endif
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

#if defined(CONFIG_M527x)
	/* Set up gpio outputs for MII lines */
	{
		volatile u8 *gpio_par_fec;
		volatile u16 *gpio_par_feci2c;

		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
		/* Set up gpio outputs for FEC0 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);

		*gpio_par_feci2c |= 0x0f00;
		*gpio_par_fec |= 0xc0;

#if defined(CONFIG_FEC2)
		/* Set up gpio outputs for FEC1 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);

		*gpio_par_feci2c |= 0x00a0;
		*gpio_par_fec |= 0xc0;
#endif /* CONFIG_FEC2 */
	}
#endif /* CONFIG_M527x */
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1447
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1448 1449 1450

	fecp = fep->hwp;

1451
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1452 1453 1454 1455
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1456
		iap = FEC_FLASHMAC;
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1469
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1470 1471

	/* Adjust MAC if using default MAC address */
1472 1473
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
#elif defined(CONFIG_M520x)

/*
 *	Code specific to Coldfire 520x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};

	fep = netdev_priv(dev);
	b = 64 + 13;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1510
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}

	/* Unmask interrupts at ColdFire interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;

		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_ICR0);
		for (b = 36; (b < 49); b++)
			icrp[b] = 0x04;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_IMRH);
		*imrp &= ~0x0001FFF0;
	}
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
#elif defined(CONFIG_M532x)
/*
 * Code specific for M532x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
	    { "fec(TXF)", 36 },
	    { "fec(RXF)", 40 },
	    { "fec(MII)", 42 },
	    { NULL },
	};

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1615
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1616
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
				idp->name, b+idp->irq);
	}

	/* Unmask interrupts */
	MCF_INTC0_ICR36 = 0x2;
	MCF_INTC0_ICR37 = 0x2;
	MCF_INTC0_ICR38 = 0x2;
	MCF_INTC0_ICR39 = 0x2;
	MCF_INTC0_ICR40 = 0x2;
	MCF_INTC0_ICR41 = 0x2;
	MCF_INTC0_ICR42 = 0x2;
	MCF_INTC0_ICR43 = 0x2;
	MCF_INTC0_ICR44 = 0x2;
	MCF_INTC0_ICR45 = 0x2;
	MCF_INTC0_ICR46 = 0x2;
	MCF_INTC0_ICR47 = 0x2;
	MCF_INTC0_ICR48 = 0x2;

	MCF_INTC0_IMRH &= ~(
		MCF_INTC_IMRH_INT_MASK36 |
		MCF_INTC_IMRH_INT_MASK37 |
		MCF_INTC_IMRH_INT_MASK38 |
		MCF_INTC_IMRH_INT_MASK39 |
		MCF_INTC_IMRH_INT_MASK40 |
		MCF_INTC_IMRH_INT_MASK41 |
		MCF_INTC_IMRH_INT_MASK42 |
		MCF_INTC_IMRH_INT_MASK43 |
		MCF_INTC_IMRH_INT_MASK44 |
		MCF_INTC_IMRH_INT_MASK45 |
		MCF_INTC_IMRH_INT_MASK46 |
		MCF_INTC_IMRH_INT_MASK47 |
		MCF_INTC_IMRH_INT_MASK48 );

	/* Set up gpio outputs for MII lines */
	MCF_GPIO_PAR_FECI2C |= (0 |
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
	MCF_GPIO_PAR_FEC = (0 |
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1757
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1758
{
G
Greg Ungerer 已提交
1759 1760
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1761
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1770
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1771 1772 1773 1774
		printk("on");
	else
		printk("off");

1775
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1776
		printk(", 100FDX");
1777
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1778
		printk(", 100HDX");
1779
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1780
		printk(", 10FDX");
1781
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1782
		printk(", 10HDX");
1783
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1784 1785
		printk(", No speed/duplex selected?");

1786
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1787
		printk(", loopback enabled");
1788

L
Linus Torvalds 已提交
1789 1790 1791 1792 1793
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1794
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1795
{
G
Greg Ungerer 已提交
1796 1797
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1811
		if (fep->phy_status
L
Linus Torvalds 已提交
1812 1813 1814
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1815
	} else
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1840
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1841 1842 1843
	schedule_work(&fep->phy_task);
}

1844
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1853
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1854 1855 1856
	schedule_work(&fep->phy_task);
}

1857 1858 1859 1860 1861 1862 1863 1864
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
1887

L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1907

L
Linus Torvalds 已提交
1908 1909 1910 1911 1912
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
1913
		} else {
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
		fec_disable_phy_intr();
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
1928
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1929
static irqreturn_t
1930
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
1946
#endif
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

1966 1967 1968 1969 1970 1971
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
2042 2043
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
2044 2045 2046
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
2047 2048
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
2049

L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
2058

L
Linus Torvalds 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2077

L
Linus Torvalds 已提交
2078
				if (hash > 31)
2079
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
2080
				else
2081
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

2094
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
2095 2096

	/* Set station address. */
2097 2098 2099 2100
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

}

/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
 */
 /*
  * XXX:  We need to clean up on failure exits here.
  */
int __init fec_enet_init(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;
	static int	index = 0;

	/* Only allow us to be probed once. */
	if (index >= FEC_MAX_PORTS)
		return -ENXIO;

2123 2124
	/* Allocate memory for buffer descriptors.
	*/
2125 2126
	mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
			&fep->bd_dma, GFP_KERNEL);
2127 2128 2129 2130 2131
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

2132 2133 2134
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
2135 2136 2137 2138 2139 2140
	/* Create an Ethernet device instance.
	*/
	fecp = (volatile fec_t *) fec_hw[index];

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
2141
	fep->netdev = dev;
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
	 * this needs some work to get unique addresses.
	 *
	 * This is our default MAC address unless the user changes
	 * it via eth_mac_addr (our dev->set_mac_addr handler).
	 */
	fec_get_mac(dev);

	cbd_base = (cbd_t *)mem_addr;
	/* XXX: missing check for allocation failure */

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
2221 2222 2223
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2224 2225 2226 2227 2228 2229

	/* Install our interrupt handlers. This varies depending on
	 * the architecture.
	*/
	fec_request_intrs(dev);

2230 2231
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
2232 2233
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
2234
	fecp->fec_r_des_active = 0;
2235 2236 2237 2238
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
2239

L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	dev->base_addr = (unsigned long)fecp;

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
	fec_set_mii(dev, fep);

2257 2258
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
2259
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2260

L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	index++;
	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
2294
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
2295 2296 2297

	/* Set station address.
	*/
2298
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
2299 2300 2301

	/* Reset all multicast.
	*/
2302 2303
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	/* Set receive and transmit descriptor base.
	*/
2311 2312 2313
	fecp->fec_r_des_start = fep->bd_dma;
	fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
				* RX_RING_SIZE;
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2366
	} else {
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
2380 2381 2382 2383
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
2384
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

static int __init fec_enet_module_init(void)
{
	struct net_device *dev;
2423
	int i, err;
2424 2425

	printk("FEC ENET Version 0.2\n");
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	for (i = 0; (i < FEC_MAX_PORTS); i++) {
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
		if (!dev)
			return -ENOMEM;
		err = fec_enet_init(dev);
		if (err) {
			free_netdev(dev);
			continue;
		}
		if (register_netdev(dev) != 0) {
			/* XXX: missing cleanup here */
			free_netdev(dev);
			return -EIO;
		}
2441

J
Johannes Berg 已提交
2442
		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449
	}
	return 0;
}

module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");