tick-broadcast.c 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22 23 24 25 26 27 28 29

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

30
static struct tick_device tick_broadcast_device;
31 32 33
/* FIXME: Use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
static DECLARE_BITMAP(tmpmask, NR_CPUS);
34
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35
static int tick_broadcast_force;
36

37 38 39 40 41 42
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

43 44 45 46 47 48 49 50
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

51
struct cpumask *tick_get_broadcast_mask(void)
52
{
53
	return to_cpumask(tick_broadcast_mask);
54 55
}

56 57 58 59 60
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
61
	if (bc)
62 63 64 65 66 67 68 69
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
int tick_check_broadcast_device(struct clock_event_device *dev)
{
70 71 72
	if ((tick_broadcast_device.evtdev &&
	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 74
		return 0;

75
	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
76
	tick_broadcast_device.evtdev = dev;
77
	if (!cpumask_empty(tick_get_broadcast_mask()))
78 79 80 81 82 83 84 85 86 87 88 89
		tick_broadcast_start_periodic(dev);
	return 1;
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

90 91 92 93 94
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

95 96 97 98 99 100 101 102 103
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
	unsigned long flags;
	int ret = 0;

104
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
105 106 107 108 109 110 111 112 113

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
114 115 116 117 118 119 120
		if (!dev->broadcast)
			dev->broadcast = tick_broadcast;
		if (!dev->broadcast) {
			pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
				     dev->name);
			dev->broadcast = err_broadcast;
		}
121
		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
122 123
		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
		ret = 1;
124 125 126 127 128 129 130 131
	} else {
		/*
		 * When the new device is not affected by the stop
		 * feature and the cpu is marked in the broadcast mask
		 * then clear the broadcast bit.
		 */
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
			int cpu = smp_processor_id();
132

133
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
134 135 136
			tick_broadcast_clear_oneshot(cpu);
		}
	}
137
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
138 139 140
	return ret;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

158
/*
159
 * Broadcast the event to the cpus, which are set in the mask (mangled).
160
 */
161
static void tick_do_broadcast(struct cpumask *mask)
162
{
163
	int cpu = smp_processor_id();
164 165 166 167 168
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
169 170
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
171 172 173 174
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

175
	if (!cpumask_empty(mask)) {
176 177 178 179 180 181
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
182 183
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
184 185 186 187 188 189 190 191 192
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
193
	raw_spin_lock(&tick_broadcast_lock);
194

195 196 197
	cpumask_and(to_cpumask(tmpmask),
		    cpu_online_mask, tick_get_broadcast_mask());
	tick_do_broadcast(to_cpumask(tmpmask));
198

199
	raw_spin_unlock(&tick_broadcast_lock);
200 201 202 203 204 205 206
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
207 208
	ktime_t next;

209 210 211 212 213 214 215 216 217 218
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
219
	 * periodic mode. We read dev->next_event first and add to it
220
	 * when the event already expired. clockevents_program_event()
221 222
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
223
	 */
224 225
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
226

227
		if (!clockevents_program_event(dev, next, false))
228 229 230 231 232 233 234 235 236
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
237
static void tick_do_broadcast_on_off(unsigned long *reason)
238 239 240
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
241
	unsigned long flags;
242
	int cpu, bc_stopped;
243

244
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
245 246 247 248 249 250 251

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
252
	 * Is the device not affected by the powerstate ?
253
	 */
254
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
255 256
		goto out;

257 258
	if (!tick_device_is_functional(dev))
		goto out;
259

260
	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
261

262 263 264
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
265 266
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
267 268
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
269
				clockevents_shutdown(dev);
270
		}
271
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
272
			tick_broadcast_force = 1;
273 274
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
275
		if (!tick_broadcast_force &&
276 277
		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
278 279
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
280 281
				tick_setup_periodic(dev, 0);
		}
282
		break;
283 284
	}

285
	if (cpumask_empty(tick_get_broadcast_mask())) {
286
		if (!bc_stopped)
287
			clockevents_shutdown(bc);
288
	} else if (bc_stopped) {
289 290
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
291 292
		else
			tick_broadcast_setup_oneshot(bc);
293 294
	}
out:
295
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
296 297 298 299 300 301 302 303
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
304
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
305
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
306
		       "offline CPU #%d\n", *oncpu);
307
	else
308
		tick_do_broadcast_on_off(&reason);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

331
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
332 333

	bc = tick_broadcast_device.evtdev;
334
	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
335 336

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
337
		if (bc && cpumask_empty(tick_get_broadcast_mask()))
338
			clockevents_shutdown(bc);
339 340
	}

341
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
342
}
343

344 345 346 347 348
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

349
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
350 351

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
352
	if (bc)
353
		clockevents_shutdown(bc);
354

355
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
356 357 358 359 360 361 362 363
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

364
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
365 366 367

	bc = tick_broadcast_device.evtdev;

368
	if (bc) {
T
Thomas Gleixner 已提交
369 370
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

371 372
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
373
			if (!cpumask_empty(tick_get_broadcast_mask()))
374
				tick_broadcast_start_periodic(bc);
375 376
			broadcast = cpumask_test_cpu(smp_processor_id(),
						     tick_get_broadcast_mask());
377 378
			break;
		case TICKDEV_MODE_ONESHOT:
379 380
			if (!cpumask_empty(tick_get_broadcast_mask()))
				broadcast = tick_resume_broadcast_oneshot(bc);
381 382
			break;
		}
383
	}
384
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
385 386 387 388 389

	return broadcast;
}


390 391
#ifdef CONFIG_TICK_ONESHOT

392 393
/* FIXME: use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
394

395
/*
396
 * Exposed for debugging: see timer_list.c
397
 */
398
struct cpumask *tick_get_broadcast_oneshot_mask(void)
399
{
400
	return to_cpumask(tick_broadcast_oneshot_mask);
401 402
}

403 404 405
static int tick_broadcast_set_event(ktime_t expires, int force)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
406

407 408 409
	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);

410
	return clockevents_program_event(bc, expires, force);
411 412
}

413 414 415
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
416
	return 0;
417 418
}

419 420 421 422 423 424
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
425
	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
426 427 428 429 430 431
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
	}
}

432 433 434 435 436 437
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
438
	ktime_t now, next_event;
439 440
	int cpu;

441
	raw_spin_lock(&tick_broadcast_lock);
442 443
again:
	dev->next_event.tv64 = KTIME_MAX;
444
	next_event.tv64 = KTIME_MAX;
445
	cpumask_clear(to_cpumask(tmpmask));
446 447
	now = ktime_get();
	/* Find all expired events */
448
	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
449 450
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev->next_event.tv64 <= now.tv64)
451
			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
452 453
		else if (td->evtdev->next_event.tv64 < next_event.tv64)
			next_event.tv64 = td->evtdev->next_event.tv64;
454 455 456
	}

	/*
457 458
	 * Wakeup the cpus which have an expired event.
	 */
459
	tick_do_broadcast(to_cpumask(tmpmask));
460 461 462 463 464 465 466 467 468 469

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
470
	 */
471
	if (next_event.tv64 != KTIME_MAX) {
472
		/*
473 474
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
475
		 */
476
		if (tick_broadcast_set_event(next_event, 0))
477 478
			goto again;
	}
479
	raw_spin_unlock(&tick_broadcast_lock);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
	int cpu;

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
498
		return;
499

500 501 502 503
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
504 505 506 507 508
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
509 510 511
		return;

	bc = tick_broadcast_device.evtdev;
512

513
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
514
	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
515 516
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
517 518 519 520 521
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
			if (dev->next_event.tv64 < bc->next_event.tv64)
				tick_broadcast_set_event(dev->next_event, 1);
		}
	} else {
522 523 524
		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_clear_cpu(cpu,
					  tick_get_broadcast_oneshot_mask());
525 526 527 528 529
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
			if (dev->next_event.tv64 != KTIME_MAX)
				tick_program_event(dev->next_event, 1);
		}
	}
530
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
531 532
}

533 534 535 536 537 538 539
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
540
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
541 542
}

543 544
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
545 546 547 548
{
	struct tick_device *td;
	int cpu;

549
	for_each_cpu(cpu, mask) {
550 551 552 553 554 555
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

556
/**
557
 * tick_broadcast_setup_oneshot - setup the broadcast device
558 559 560
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
561 562
	int cpu = smp_processor_id();

563 564
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
565 566
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;

567
		bc->event_handler = tick_handle_oneshot_broadcast;
568 569 570 571 572 573 574 575 576 577

		/* Take the do_timer update */
		tick_do_timer_cpu = cpu;

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
578 579 580 581 582 583 584
		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
		cpumask_or(tick_get_broadcast_oneshot_mask(),
			   tick_get_broadcast_oneshot_mask(),
			   to_cpumask(tmpmask));

		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
585
			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
586 587
			tick_broadcast_init_next_event(to_cpumask(tmpmask),
						       tick_next_period);
588 589 590
			tick_broadcast_set_event(tick_next_period, 1);
		} else
			bc->next_event.tv64 = KTIME_MAX;
591 592 593 594 595 596 597 598 599
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
600
	}
601 602 603 604 605 606 607 608 609 610
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

611
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
612 613

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
614 615 616
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
617

618
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
619 620 621 622 623 624 625 626 627 628 629
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

630
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
631

632 633 634 635
	/*
	 * Clear the broadcast mask flag for the dead cpu, but do not
	 * stop the broadcast device!
	 */
636
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
637

638
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
639 640
}

641 642 643 644 645 646 647 648
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

649 650 651 652 653 654 655 656 657 658
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

659
#endif